import gradio as gr import torch import cv2 from huggingface_hub import snapshot_download from fastMONAI.vision_all import * def initialize_system(): """Initial setup of model paths and other constants.""" models_path = Path(snapshot_download(repo_id="skaliy/endometrial_cancer_segmentation", cache_dir='models', revision='main')) save_dir = Path.cwd() / 'ec_pred' save_dir.mkdir(parents=True, exist_ok=True) download_example_endometrial_cancer_data(path=save_dir, multi_channel=False) return models_path, save_dir def extract_slice_from_mask(img, mask_data): """Extract a slice from the 3D [W, H, D] image and mask data based on mask data.""" sums = mask_data.sum(axis=(0, 1)) idx = np.argmax(sums) img, mask_data = img[:, :, idx], mask_data[:, :, idx] return np.fliplr(np.rot90(img, -1)), np.fliplr(np.rot90(mask_data, -1)) #| export def get_fused_image(img, pred_mask, alpha=0.8): """Fuse a grayscale image with a mask overlay.""" gray_img_colored = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) mask_color = np.array([0, 0, 255]) colored_mask = (pred_mask[..., None] * mask_color).astype(np.uint8) return cv2.addWeighted(gray_img_colored, alpha, colored_mask, 1 - alpha, 0) def gradio_image_segmentation(fileobj, learn, reorder, resample, save_dir): """Predict function using the learner and other resources.""" img_path = Path(fileobj.name) save_fn = 'pred_' + img_path.stem save_path = save_dir / save_fn org_img, input_img, org_size = med_img_reader(img_path, reorder=reorder, resample=resample, only_tensor=False) mask_data = inference(learn, reorder=reorder, resample=resample, org_img=org_img, input_img=input_img, org_size=org_size).data if "".join(org_img.orientation) == "LSA": mask_data = mask_data.permute(0,1,3,2) mask_data = torch.flip(mask_data[0], dims=[1]) mask_data = torch.Tensor(mask_data)[None] img = org_img.data org_img.set_data(mask_data) org_img.save(save_path) img, pred_mask = extract_slice_from_mask(img[0], mask_data[0]) img = ((img - img.min()) / (img.max() - img.min()) * 255).astype(np.uint8) #normalize volume = compute_binary_tumor_volume(org_img) return get_fused_image(img, pred_mask), round(volume, 2) models_path, save_dir = initialize_system() learn, reorder, resample = load_system_resources(models_path=models_path, learner_fn='vibe-learner.pkl', variables_fn='vars.pkl') output_text = gr.Textbox(label="Volume of the predicted tumor:") demo = gr.Interface( fn=lambda fileobj: gradio_image_segmentation(fileobj, learn, reorder, resample, save_dir), inputs=["file"], outputs=["image", output_text], examples=[[save_dir/"vibe.nii.gz"]]) demo.launch()