File size: 6,704 Bytes
910e2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import math
import sys
from typing import Iterable

import torch
import torch.nn as nn

from .utils import (
    MetricLogger,
    SmoothedValue,
)


def train_one_epoch(

    model: torch.nn.Module, 

    model_dtype: str,

    data_loader: Iterable, 

    optimizer: torch.optim.Optimizer,

    optimizer_disc: torch.optim.Optimizer,

    device: torch.device, 

    epoch: int, 

    loss_scaler, 

    loss_scaler_disc,

    clip_grad: float = 0,

    log_writer=None, 

    lr_scheduler=None, 

    start_steps=None,

    lr_schedule_values=None,

    lr_schedule_values_disc=None,

    args=None,

    print_freq=20,

    iters_per_epoch=2000,

):
    # The trainer for causal video vae

    model.train()
    metric_logger = MetricLogger(delimiter="  ")

    if optimizer is not None:
        metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
        metric_logger.add_meter('min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
    
    if optimizer_disc is not None:
        metric_logger.add_meter('disc_lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
        metric_logger.add_meter('disc_min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))

    header = 'Epoch: [{}]'.format(epoch)

    if model_dtype == 'bf16':
        _dtype = torch.bfloat16
    else:
        _dtype = torch.float16

    print("Start training epoch {}, {} iters per inner epoch.".format(epoch, iters_per_epoch))

    for step in metric_logger.log_every(range(iters_per_epoch), print_freq, header):
        if step >= iters_per_epoch:
            break
        
        it = start_steps + step  # global training iteration
        if lr_schedule_values is not None:
            for i, param_group in enumerate(optimizer.param_groups):
                if lr_schedule_values is not None:
                    param_group["lr"] = lr_schedule_values[it] * param_group.get("lr_scale", 1.0)

        if optimizer_disc is not None:
            for i, param_group in enumerate(optimizer_disc.param_groups):
                if lr_schedule_values_disc is not None:
                    param_group["lr"] = lr_schedule_values_disc[it] * param_group.get("lr_scale", 1.0)

        samples = next(data_loader)
    
        samples['video'] = samples['video'].to(device, non_blocking=True)

        with torch.cuda.amp.autocast(enabled=True, dtype=_dtype):
            rec_loss, gan_loss, log_loss = model(samples['video'], args.global_step, identifier=samples['identifier'])

        ###################################################################################################
        # The update of rec_loss
        if rec_loss is not None:
            loss_value = rec_loss.item()

            if not math.isfinite(loss_value):
                print("Loss is {}, stopping training".format(loss_value), force=True)
                sys.exit(1)
        
            optimizer.zero_grad()
            is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
            grad_norm = loss_scaler(rec_loss, optimizer, clip_grad=clip_grad,
                                    parameters=model.module.vae.parameters(), create_graph=is_second_order)
            
            if "scale" in loss_scaler.state_dict():
                loss_scale_value = loss_scaler.state_dict()["scale"]
            else:
                loss_scale_value = 1

            metric_logger.update(vae_loss=loss_value)
            metric_logger.update(loss_scale=loss_scale_value)

        ###################################################################################################

        # The updaet of gan_loss
        if gan_loss is not None:
            gan_loss_value = gan_loss.item()
            
            if not math.isfinite(gan_loss_value):
                print("The gan discriminator Loss is {}, stopping training".format(gan_loss_value), force=True)
                sys.exit(1)

            optimizer_disc.zero_grad()
            is_second_order = hasattr(optimizer_disc, 'is_second_order') and optimizer_disc.is_second_order
            disc_grad_norm = loss_scaler_disc(gan_loss, optimizer_disc, clip_grad=clip_grad,
                                    parameters=model.module.loss.discriminator.parameters(), create_graph=is_second_order)

            if "scale" in loss_scaler_disc.state_dict():
                disc_loss_scale_value = loss_scaler_disc.state_dict()["scale"]
            else:
                disc_loss_scale_value = 1

            metric_logger.update(disc_loss=gan_loss_value)
            metric_logger.update(disc_loss_scale=disc_loss_scale_value)
            metric_logger.update(disc_grad_norm=disc_grad_norm)

            min_lr = 10.
            max_lr = 0.
            for group in optimizer_disc.param_groups:
                min_lr = min(min_lr, group["lr"])
                max_lr = max(max_lr, group["lr"])

            metric_logger.update(disc_lr=max_lr)
            metric_logger.update(disc_min_lr=min_lr)

        torch.cuda.synchronize()
        new_log_loss = {k.split('/')[-1]:v for k, v in log_loss.items() if k not in ['total_loss']}
        metric_logger.update(**new_log_loss)

        if rec_loss is not None:
            min_lr = 10.
            max_lr = 0.
            for group in optimizer.param_groups:
                min_lr = min(min_lr, group["lr"])
                max_lr = max(max_lr, group["lr"])

            metric_logger.update(lr=max_lr)
            metric_logger.update(min_lr=min_lr)
            weight_decay_value = None
            for group in optimizer.param_groups:
                if group["weight_decay"] > 0:
                    weight_decay_value = group["weight_decay"]
            metric_logger.update(weight_decay=weight_decay_value)
            metric_logger.update(grad_norm=grad_norm)

        if log_writer is not None:
            log_writer.update(**new_log_loss, head="train/loss")
            log_writer.update(lr=max_lr, head="opt")
            log_writer.update(min_lr=min_lr, head="opt")
            log_writer.update(weight_decay=weight_decay_value, head="opt")
            log_writer.update(grad_norm=grad_norm, head="opt")

            log_writer.set_step()

        if lr_scheduler is not None:
            lr_scheduler.step_update(start_steps + step)

        args.global_step = args.global_step + 1

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}