import subprocess # Installing flash_attn subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) import gradio as gr from PIL import Image from transformers import AutoModelForCausalLM from transformers import AutoProcessor from transformers import TextIteratorStreamer import time from threading import Thread import torch import spaces model_id = "microsoft/Phi-3-vision-128k-instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto") processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model.to("cuda:0") # Enhanced Placeholder HTML with instructions and centralization PLACEHOLDER = """

Get Ripped with Arnold's AI Coach

Welcome to the ultimate fitness companion! 💪

""" @spaces.GPU def bot_streaming(message, history): print(f'message is - {message}') print(f'history is - {history}') if message["files"]: if type(message["files"][-1]) == dict: image = message["files"][-1]["path"] else: image = message["files"][-1] else: for hist in history: if type(hist[0]) == tuple: image = hist[0][0] try: if image is None: raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") except NameError: raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") conversation = [] flag = False for user, assistant in history: if assistant is None: flag = True conversation.extend([{"role": "user", "content": ""}]) continue if flag == True: conversation[0]['content'] = f"<|image_1|>\n{user}" conversation.extend([{"role": "assistant", "content": assistant}]) flag = False continue conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) if len(history) == 0: conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"}) else: conversation.append({"role": "user", "content": message['text']}) print(f"prompt is -\n{conversation}") prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) image = Image.open(image) inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces': False,}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot(scale=1, placeholder=PLACEHOLDER) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) with gr.Blocks(fill_height=True,) as demo: gr.ChatInterface( fn=bot_streaming, title="Get Ripped with Arnold's AI Coach", examples=[ {"text": "Identify and provide coaching cues for this exercise.", "files": ["./squat.jpg"]}, {"text": "What improvements can I make?", "files": ["./pushup.jpg"]}, {"text": "How is my form?", "files": ["./plank.jpg"]}, {"text": "Give me some tips to improve my deadlift.", "files": ["./deadlift.jpg"]} ], description="Welcome to the ultimate fitness companion! 💪\nUpload a photo of your exercise and get instant feedback to perfect your form. Improve your workouts with expert tips!", stop_btn="Stop Generation", multimodal=True, textbox=chat_input, chatbot=chatbot, cache_examples=False, examples_per_page=3 ) demo.queue() demo.launch(debug=True, quiet=True)