import json import os import zipfile from io import BytesIO from tempfile import NamedTemporaryFile import tempfile import gradio as gr import pandas as pd from PIL import Image import safetensors.torch import spaces import timm from timm.models import VisionTransformer import torch from torchvision.transforms import transforms from torchvision.transforms import InterpolationMode import torchvision.transforms.functional as TF from torch.utils.data import Dataset, DataLoader from math import ceil from typing import Callable from functools import partial import spaces.config from spaces.zero.decorator import P, R torch.set_grad_enabled(False) def _dynGPU( fn: Callable[P, R] | None, duration: Callable[P, int], min=10, max=300, step=5 ) -> Callable[P, R]: if not spaces.config.Config.zero_gpu: return fn funcs = [ (t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs))) for t in range(min, max + 1, step) ] def wrapper(*args, **kwargs): requirement = duration(*args, **kwargs) # find the function that satisfies the duration requirement for t, func in funcs: if t >= requirement: gr.Info(f"Acquiring ZeroGPU for {t} seconds") return func(*args, **kwargs) # if no function is found, return the last one gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds") return funcs[-1][1](*args, **kwargs) return wrapper def dynGPU( fn: Callable[P, R] | None = None, duration: Callable[P, int] = lambda: 60, min=10, max=300, step=5, ) -> Callable[P, R]: if fn is None: return partial(_dynGPU, duration=duration, min=min, max=max, step=step) return _dynGPU(fn, duration, min, max, step) class Fit(torch.nn.Module): def __init__( self, bounds: tuple[int, int] | int, interpolation = InterpolationMode.LANCZOS, grow: bool = True, pad: float | None = None ): super().__init__() self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds self.interpolation = interpolation self.grow = grow self.pad = pad def forward(self, img: Image) -> Image: wimg, himg = img.size hbound, wbound = self.bounds hscale = hbound / himg wscale = wbound / wimg if not self.grow: hscale = min(hscale, 1.0) wscale = min(wscale, 1.0) scale = min(hscale, wscale) if scale == 1.0: return img hnew = min(round(himg * scale), hbound) wnew = min(round(wimg * scale), wbound) img = TF.resize(img, (hnew, wnew), self.interpolation) if self.pad is None: return img hpad = hbound - hnew wpad = wbound - wnew tpad = hpad // 2 bpad = hpad - tpad lpad = wpad // 2 rpad = wpad - lpad return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"bounds={self.bounds}, " + f"interpolation={self.interpolation.value}, " + f"grow={self.grow}, " + f"pad={self.pad})" ) class CompositeAlpha(torch.nn.Module): def __init__( self, background: tuple[float, float, float] | float, ): super().__init__() self.background = (background, background, background) if isinstance(background, float) else background self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) def forward(self, img: torch.Tensor) -> torch.Tensor: if img.shape[-3] == 3: return img alpha = img[..., 3, None, :, :] img[..., :3, :, :] *= alpha background = self.background.expand(-1, img.shape[-2], img.shape[-1]) if background.ndim == 1: background = background[:, None, None] elif background.ndim == 2: background = background[None, :, :] img[..., :3, :, :] += (1.0 - alpha) * background return img[..., :3, :, :] def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"background={self.background})" ) transform = transforms.Compose([ Fit((384, 384)), transforms.ToTensor(), CompositeAlpha(0.5), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), transforms.CenterCrop((384, 384)), ]) model = timm.create_model( "vit_so400m_patch14_siglip_384.webli", pretrained=False, num_classes=9083, ) # type: VisionTransformer class GatedHead(torch.nn.Module): def __init__(self, num_features: int, num_classes: int ): super().__init__() self.num_classes = num_classes self.linear = torch.nn.Linear(num_features, num_classes * 2) self.act = torch.nn.Sigmoid() self.gate = torch.nn.Sigmoid() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.linear(x) x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:]) return x model.head = GatedHead(min(model.head.weight.shape), 9083) safetensors.torch.load_model(model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() with open("tagger_tags.json", "r") as file: tags = json.load(file) # type: dict allowed_tags = list(tags.keys()) for idx, tag in enumerate(allowed_tags): allowed_tags[idx] = tag.replace("_", " ") sorted_tag_score = {} @spaces.GPU(duration=6) def run_classifier(image, threshold): global sorted_tag_score img = image.convert('RGBA') tensor = transform(img).unsqueeze(0).to(device) with torch.no_grad(): probits = model(tensor)[0] values, indices = probits.topk(250) tag_score = dict() for i in range(indices.size(0)): tag_score[allowed_tags[indices[i]]] = values[i].item() sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) return create_tags(threshold) def create_tags(threshold): global sorted_tag_score filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} text_no_impl = ", ".join(filtered_tag_score.keys()) return text_no_impl, filtered_tag_score def clear_image(): global sorted_tag_score sorted_tag_score = {} return "", {} class ImageDataset(Dataset): def __init__(self, image_files, transform): self.image_files = image_files self.transform = transform def __len__(self): return len(self.image_files) def __getitem__(self, idx): img_path = self.image_files[idx] img = Image.open(img_path).convert('RGB') return self.transform(img), os.path.basename(img_path) def measure_duration(images, threshold) -> int: return ceil(len(images) / 64) * 5 + 3 @dynGPU(duration=measure_duration) def process_images(images, threshold): dataset = ImageDataset(images, transform) dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False) all_results = [] with torch.no_grad(): for batch, filenames in dataloader: batch = batch.to(device) probabilities = model(batch) for i, prob in enumerate(probabilities): indices = torch.where(prob > threshold)[0] values = prob[indices] temp = [] tag_score = dict() for j in range(indices.size(0)): tag = allowed_tags[indices[j]] score = values[j].item() temp.append([tag, score]) tag_score[tag] = score tags = ", ".join([t[0] for t in temp]) all_results.append((filenames[i], tags, tag_score)) return all_results def is_valid_image(file_path): try: with Image.open(file_path) as img: img.verify() return True except: return False def process_zip(zip_file, threshold): if zip_file is None: return None, None with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(zip_file.name, 'r') as zip_ref: zip_ref.extractall(temp_dir) all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)] image_files = [f for f in all_files if is_valid_image(f)] results = process_images(image_files, threshold) temp_file = NamedTemporaryFile(delete=False, suffix=".zip") with zipfile.ZipFile(temp_file, "w") as zip_ref: for image_name, text_no_impl, _ in results: with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file: file.write(text_no_impl.encode()) temp_file.seek(0) df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags']) return temp_file.name, df with gr.Blocks(css=".output-class { display: none; }") as demo: gr.Markdown(""" ## Joint Tagger Project: JTP-PILOT² Demo **BETA** This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs. Special thanks to Minotoro at frosting.ai for providing the compute power for this project. """) with gr.Tabs(): with gr.TabItem("Single Image"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False) threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") with gr.Column(): tag_string = gr.Textbox(label="Tag String") label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) image_input.upload( fn=run_classifier, inputs=[image_input, threshold_slider], outputs=[tag_string, label_box] ) threshold_slider.input( fn=create_tags, inputs=[threshold_slider], outputs=[tag_string, label_box] ) with gr.TabItem("Multiple Images"): with gr.Row(): with gr.Column(): zip_input = gr.File(label="Upload ZIP file", file_types=['.zip']) multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") process_button = gr.Button("Process Images") with gr.Column(): zip_output = gr.File(label="Download Tagged Text Files (ZIP)") dataframe_output = gr.Dataframe(label="Image Tags Summary") process_button.click( fn=process_zip, inputs=[zip_input, multi_threshold_slider], outputs=[zip_output, dataframe_output] ) if __name__ == "__main__": demo.launch()