silvaKenpachi commited on
Commit
dabf209
·
verified ·
1 Parent(s): 4d4ad4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -7
app.py CHANGED
@@ -65,13 +65,40 @@ outputs = [gr.Dataframe(
65
  #return pd.DataFrame(predictions, columns=["Depression"])
66
 
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  def infer(inputs):
69
  data = pd.DataFrame(inputs, columns=headers)
70
 
71
  # Replace empty strings with NaN
72
  data = data.replace('', np.nan)
73
 
74
- # Add missing columns with default values (e.g., 0)
75
  for col in all_headers:
76
  if col not in data.columns:
77
  data[col] = 0
@@ -79,21 +106,26 @@ def infer(inputs):
79
  # Ensure the order of columns matches the training data
80
  data = data[all_headers]
81
 
82
- # Fill NaN values with default values (e.g., 0)
83
  data = data.fillna(0)
84
 
85
- # Convert all data to float
86
- data = data.astype(float)
 
 
 
 
87
 
 
88
  predictions = pipe.predict(data)
89
- #return pd.DataFrame(predictions, columns=["Name", "Depression"])
 
90
  return pd.DataFrame({
91
- 'Name': data['Name'],
92
  'Depression': predictions
93
  })
94
 
95
 
96
-
97
  gr.Interface(
98
  fn=infer,
99
  inputs=inputs,
 
65
  #return pd.DataFrame(predictions, columns=["Depression"])
66
 
67
 
68
+ #def infer(inputs):
69
+ #data = pd.DataFrame(inputs, columns=headers)
70
+
71
+ # Replace empty strings with NaN
72
+ #data = data.replace('', np.nan)
73
+
74
+ # Add missing columns with default values (e.g., 0)
75
+ #for col in all_headers:
76
+ #if col not in data.columns:
77
+ #data[col] = 0
78
+
79
+ # Ensure the order of columns matches the training data
80
+ #data = data[all_headers]
81
+
82
+ # Fill NaN values with default values (e.g., 0)
83
+ #data = data.fillna(0)
84
+
85
+ # Convert all data to float
86
+ #data = data.astype(float)
87
+
88
+ #predictions = pipe.predict(data)
89
+ #return pd.DataFrame(predictions, columns=["Name", "Depression"])
90
+ #return pd.DataFrame({
91
+ #'Name': data['Name'],
92
+ #'Depression': predictions
93
+ #})
94
+
95
  def infer(inputs):
96
  data = pd.DataFrame(inputs, columns=headers)
97
 
98
  # Replace empty strings with NaN
99
  data = data.replace('', np.nan)
100
 
101
+ # Add missing columns with default values
102
  for col in all_headers:
103
  if col not in data.columns:
104
  data[col] = 0
 
106
  # Ensure the order of columns matches the training data
107
  data = data[all_headers]
108
 
109
+ # Fill NaN values
110
  data = data.fillna(0)
111
 
112
+ # Store the Name column before conversion
113
+ names = data['Name'].copy()
114
+
115
+ # Convert numeric columns to float, excluding 'Name'
116
+ numeric_columns = [col for col in all_headers if col != 'Name']
117
+ data[numeric_columns] = data[numeric_columns].astype(float)
118
 
119
+ # Make predictions
120
  predictions = pipe.predict(data)
121
+
122
+ # Create output DataFrame with original names and predictions
123
  return pd.DataFrame({
124
+ 'Name': names,
125
  'Depression': predictions
126
  })
127
 
128
 
 
129
  gr.Interface(
130
  fn=infer,
131
  inputs=inputs,