Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -65,13 +65,40 @@ outputs = [gr.Dataframe(
|
|
65 |
#return pd.DataFrame(predictions, columns=["Depression"])
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def infer(inputs):
|
69 |
data = pd.DataFrame(inputs, columns=headers)
|
70 |
|
71 |
# Replace empty strings with NaN
|
72 |
data = data.replace('', np.nan)
|
73 |
|
74 |
-
# Add missing columns with default values
|
75 |
for col in all_headers:
|
76 |
if col not in data.columns:
|
77 |
data[col] = 0
|
@@ -79,21 +106,26 @@ def infer(inputs):
|
|
79 |
# Ensure the order of columns matches the training data
|
80 |
data = data[all_headers]
|
81 |
|
82 |
-
# Fill NaN values
|
83 |
data = data.fillna(0)
|
84 |
|
85 |
-
#
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
|
|
88 |
predictions = pipe.predict(data)
|
89 |
-
|
|
|
90 |
return pd.DataFrame({
|
91 |
-
'Name':
|
92 |
'Depression': predictions
|
93 |
})
|
94 |
|
95 |
|
96 |
-
|
97 |
gr.Interface(
|
98 |
fn=infer,
|
99 |
inputs=inputs,
|
|
|
65 |
#return pd.DataFrame(predictions, columns=["Depression"])
|
66 |
|
67 |
|
68 |
+
#def infer(inputs):
|
69 |
+
#data = pd.DataFrame(inputs, columns=headers)
|
70 |
+
|
71 |
+
# Replace empty strings with NaN
|
72 |
+
#data = data.replace('', np.nan)
|
73 |
+
|
74 |
+
# Add missing columns with default values (e.g., 0)
|
75 |
+
#for col in all_headers:
|
76 |
+
#if col not in data.columns:
|
77 |
+
#data[col] = 0
|
78 |
+
|
79 |
+
# Ensure the order of columns matches the training data
|
80 |
+
#data = data[all_headers]
|
81 |
+
|
82 |
+
# Fill NaN values with default values (e.g., 0)
|
83 |
+
#data = data.fillna(0)
|
84 |
+
|
85 |
+
# Convert all data to float
|
86 |
+
#data = data.astype(float)
|
87 |
+
|
88 |
+
#predictions = pipe.predict(data)
|
89 |
+
#return pd.DataFrame(predictions, columns=["Name", "Depression"])
|
90 |
+
#return pd.DataFrame({
|
91 |
+
#'Name': data['Name'],
|
92 |
+
#'Depression': predictions
|
93 |
+
#})
|
94 |
+
|
95 |
def infer(inputs):
|
96 |
data = pd.DataFrame(inputs, columns=headers)
|
97 |
|
98 |
# Replace empty strings with NaN
|
99 |
data = data.replace('', np.nan)
|
100 |
|
101 |
+
# Add missing columns with default values
|
102 |
for col in all_headers:
|
103 |
if col not in data.columns:
|
104 |
data[col] = 0
|
|
|
106 |
# Ensure the order of columns matches the training data
|
107 |
data = data[all_headers]
|
108 |
|
109 |
+
# Fill NaN values
|
110 |
data = data.fillna(0)
|
111 |
|
112 |
+
# Store the Name column before conversion
|
113 |
+
names = data['Name'].copy()
|
114 |
+
|
115 |
+
# Convert numeric columns to float, excluding 'Name'
|
116 |
+
numeric_columns = [col for col in all_headers if col != 'Name']
|
117 |
+
data[numeric_columns] = data[numeric_columns].astype(float)
|
118 |
|
119 |
+
# Make predictions
|
120 |
predictions = pipe.predict(data)
|
121 |
+
|
122 |
+
# Create output DataFrame with original names and predictions
|
123 |
return pd.DataFrame({
|
124 |
+
'Name': names,
|
125 |
'Depression': predictions
|
126 |
})
|
127 |
|
128 |
|
|
|
129 |
gr.Interface(
|
130 |
fn=infer,
|
131 |
inputs=inputs,
|