Spaces:
Runtime error
Runtime error
silvaKenpachi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -93,35 +93,36 @@ outputs = [gr.Dataframe(
|
|
93 |
#})
|
94 |
|
95 |
def infer(inputs):
|
|
|
96 |
data = pd.DataFrame(inputs, columns=headers)
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
|
101 |
-
# Replace empty strings with NaN
|
102 |
-
|
|
|
103 |
|
104 |
# Add missing columns with default values
|
105 |
for col in all_headers:
|
106 |
-
if col not in
|
107 |
-
|
108 |
|
109 |
# Ensure the order of columns matches the training data
|
110 |
-
|
111 |
|
112 |
-
# Fill NaN values
|
113 |
-
|
114 |
|
115 |
-
# Convert numeric columns to float
|
116 |
-
numeric_columns = [
|
117 |
-
data[numeric_columns] = data[numeric_columns].astype(float)
|
118 |
|
119 |
# Make predictions
|
120 |
-
predictions = pipe.predict(
|
121 |
|
122 |
-
# Create output DataFrame
|
123 |
return pd.DataFrame({
|
124 |
-
'Name':
|
125 |
'Depression': predictions
|
126 |
})
|
127 |
|
|
|
93 |
#})
|
94 |
|
95 |
def infer(inputs):
|
96 |
+
# Create DataFrame from inputs
|
97 |
data = pd.DataFrame(inputs, columns=headers)
|
98 |
|
99 |
+
# Create a copy of the input DataFrame to preserve original data
|
100 |
+
prediction_data = data.copy()
|
101 |
|
102 |
+
# Replace empty strings with NaN for numeric columns only
|
103 |
+
numeric_columns = [col for col in all_headers if col != 'Name']
|
104 |
+
prediction_data[numeric_columns] = prediction_data[numeric_columns].replace('', np.nan)
|
105 |
|
106 |
# Add missing columns with default values
|
107 |
for col in all_headers:
|
108 |
+
if col not in prediction_data.columns:
|
109 |
+
prediction_data[col] = 0
|
110 |
|
111 |
# Ensure the order of columns matches the training data
|
112 |
+
prediction_data = prediction_data[all_headers]
|
113 |
|
114 |
+
# Fill NaN values in numeric columns only
|
115 |
+
prediction_data[numeric_columns] = prediction_data[numeric_columns].fillna(0)
|
116 |
|
117 |
+
# Convert numeric columns to float
|
118 |
+
prediction_data[numeric_columns] = prediction_data[numeric_columns].astype(float)
|
|
|
119 |
|
120 |
# Make predictions
|
121 |
+
predictions = pipe.predict(prediction_data)
|
122 |
|
123 |
+
# Create output DataFrame using original names
|
124 |
return pd.DataFrame({
|
125 |
+
'Name': data['Name'],
|
126 |
'Depression': predictions
|
127 |
})
|
128 |
|