File size: 19,316 Bytes
4222961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "nAJ2Ubu1-MUb",
        "outputId": "1ba4d045-c94d-44d8-c744-e121299e44b4",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "--2023-11-05 01:01:17--  https://github.com/LC1332/Needy-Haruhi/blob/main/data/Jines.xlsx\n",
            "Resolving github.com (github.com)... 192.30.255.113\n",
            "Connecting to github.com (github.com)|192.30.255.113|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 4583 (4.5K) [text/plain]\n",
            "Saving to: ‘Jines.xlsx’\n",
            "\n",
            "\rJines.xlsx            0%[                    ]       0  --.-KB/s               \rJines.xlsx          100%[===================>]   4.48K  --.-KB/s    in 0s      \n",
            "\n",
            "2023-11-05 01:01:17 (50.6 MB/s) - ‘Jines.xlsx’ saved [4583/4583]\n",
            "\n"
          ]
        }
      ],
      "source": [
        "# 下载文件。\n",
        "!wget https://github.com/LC1332/Needy-Haruhi/blob/main/data/Jines.xlsx\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "! pip install pandas"
      ],
      "metadata": {
        "id": "siZysoEBADOv",
        "outputId": "1550bb64-b8d5-44a9-e376-df2a86f000f3",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n",
            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.3.post1)\n",
            "Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas) (1.23.5)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "import re\n",
        "import shutil\n",
        "\n",
        "import pandas as pd\n",
        "\n",
        "Jines_file = r\"/content/Jines.xlsx\"\n",
        "\n",
        "#读取与查询\n",
        "Jines = pd.read_excel(Jines_file)\n",
        "# 查询有选项的内容\n",
        "pattern = r'(?<=\\().*?(?=\\))'\n",
        "\n",
        "# 匹配事件\n",
        "Title = Jines.loc[(Jines['ParentId (more info)'].str.contains(pattern, regex=True, na=False))]\n",
        "\n",
        "Attribute_temp = {\"Affection\": 0, \"Stress\": 0, \"Darkness\": 0}\n",
        "\n",
        "\n",
        "# 把文件转换为txt\n",
        "def format_output(row):\n",
        "    # ID\n",
        "    ParentId = f'{row[\"ParentId (more info)\"]}'\n",
        "    Category_temp = f'{row[\"Category\"]}'\n",
        "    Category = sanitize_filename(Category_temp)\n",
        "    ID = f'{row[\"Id\"]}'\n",
        "\n",
        "    # 匹配标题\n",
        "    regex1 = r\"\\w+(?= \\()\"\n",
        "    title = re.search(regex1, ParentId)\n",
        "    title_str = title.group()\n",
        "\n",
        "    # 事件\n",
        "    event_list = []\n",
        "\n",
        "    # 匹配提问\n",
        "    match = re.search(r\"\\(First Part\\)\", ParentId)\n",
        "    match2 = re.search(r\"\\(First Part; end\\)\", ParentId)\n",
        "    match3 = re.search(r\"\\(Third Part\\)\", ParentId)\n",
        "    match4 = re.search(r\"\\(Second Part\\)\", ParentId)\n",
        "    match5 = re.search(r\"\\(Fourth Part\\)\", ParentId)\n",
        "\n",
        "    # 数值\n",
        "    aff = f\"Affection: {row['Affection']}\"\n",
        "    str = f\"Stress: {row['Stress']}\"\n",
        "    dar = f\"Darkness: {row['Darkness']}\"\n",
        "\n",
        "    # 匹配选项以及回复\n",
        "    choose_time = re.search(r\"\\d+\", ParentId)\n",
        "    reply_ = re.search(r'(\\(.*Option[0-9]+;end\\))', ParentId)\n",
        "    reply_2 = re.search(r'(\\(.*Option[0-9]\\))', ParentId)\n",
        "\n",
        "    # 处理提问\n",
        "    # if match or match2 or match4 or match5 or match3:\n",
        "    if match or match2 or match3 or match4 or match5:\n",
        "\n",
        "        Prefix = f'\\n## 对话\\n### Prefix Category_temp:{Category} ID:{ID}'\n",
        "        Ame = f\"糖糖: {row['BodyCn']}\"\n",
        "        with open(f'events/{title_str}.txt', 'a+', encoding='utf-8') as f:\n",
        "            # 使用 join 方法将 Ame, Title_ame, Category 连接成一个字符串,并在每个字段之间添加一个制表符\n",
        "            line = '\\n'.join([Prefix, Ame])\n",
        "\n",
        "            line_bytes = line.encode('utf-8')\n",
        "            # 将字节对象写入到文件中\n",
        "            line_str = line_bytes.decode('utf-8')\n",
        "            # 将字符串对象写入到文件中\n",
        "            f.write(line_str)\n",
        "\n",
        "        return \"\\n\".join([Prefix, Ame])\n",
        "\n",
        "    # 处理选项\n",
        "    elif row['Speaker/Action (in blue)'] == 'pi':\n",
        "        # 跳过数值为空的回复\n",
        "        try:\n",
        "            key = f'\\n### Option-{choose_time.group()}'\n",
        "            user = f\"User: {row['BodyCn']}\"\n",
        "\n",
        "            if aff == 'Affection: nan':\n",
        "                aff = ''\n",
        "            if str == 'Stress: nan':\n",
        "                str = ''\n",
        "            if dar == 'Darkness: nan':\n",
        "                dar = ''\n",
        "            value = f\"Attribute Change: {aff} {str} {dar}\"\n",
        "\n",
        "            if value == 'Attribute Change:   ':\n",
        "                value = ''\n",
        "\n",
        "            with open(f'events/{title_str}.txt', 'a+', encoding='utf-8') as f:\n",
        "                # 使用 join 方法将 Ame, Title_ame, Category 连接成一个字符串,并在每个字段之间添加一个制表符\n",
        "                line = '\\n'.join([key, user, value])\n",
        "\n",
        "                line_bytes = line.encode('utf-8')\n",
        "                # 将字节对象写入到文件中\n",
        "                line_str = line_bytes.decode('utf-8')\n",
        "                # 将字符串对象写入到文件中\n",
        "                f.write(line_str)\n",
        "            return \"\\n\".join([key, user, value])\n",
        "        except:\n",
        "            pass\n",
        "\n",
        "    # 处理选项回复\n",
        "    elif reply_ or (reply_2 and row['Speaker/Action (in blue)'] == 'ame'):\n",
        "        try:\n",
        "            key = f'\\nReply:\\n糖糖:{row[\"BodyCn\"]}'\n",
        "\n",
        "            if aff == 'Affection: nan':\n",
        "                aff = ''\n",
        "            if str == 'Stress: nan':\n",
        "                str = ''\n",
        "            if dar == 'Darkness: nan':\n",
        "                dar = ''\n",
        "            value = f\"Attribute Change: {aff} {str} {dar}\"\n",
        "\n",
        "            if value == 'Attribute Change:   ':\n",
        "                value = 'Attribute Change: None'\n",
        "\n",
        "            if key == '\\nReply:\\n糖糖:nan':\n",
        "                with open(f'events/{title_str}.txt', 'a+', encoding='utf-8') as f:\n",
        "                    # 使用 join 方法将 Ame, Title_ame, Category 连接成一个字符串,并在每个字段之间添加一个制表符\n",
        "                    line = '\\n'.join([value])\n",
        "                    line_bytes = line.encode('utf-8')\n",
        "                    # 将字节对象写入到文件中\n",
        "                    line_str = line_bytes.decode('utf-8')\n",
        "                    # 将字符串对象写入到文件中\n",
        "                    f.write(line_str)\n",
        "\n",
        "                return \"\\n\".join([value])\n",
        "\n",
        "            with open(f'events/{title_str}.txt', 'a+', encoding='utf-8') as f:\n",
        "                # 使用 join 方法将 Ame, Title_ame, Category 连接成一个字符串,并在每个字段之间添加一个制表符\n",
        "                line = '\\n'.join([key, value])\n",
        "\n",
        "                line_bytes = line.encode('utf-8')\n",
        "                # 将字节对象写入到文件中\n",
        "                line_str = line_bytes.decode('utf-8')\n",
        "                # 将字符串对象写入到文件中\n",
        "                f.write(line_str)\n",
        "\n",
        "            return \"\\n\".join([key, value])\n",
        "        except:\n",
        "            pass\n"
      ],
      "metadata": {
        "id": "DgCgTdvC-eEe",
        "outputId": "34774b6e-3cdb-4cab-8773-c55703d66c3b",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 410
        }
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "error",
          "ename": "ValueError",
          "evalue": "ignored",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-13-6c5ed78bc039>\u001b[0m in \u001b[0;36m<cell line: 10>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      9\u001b[0m \u001b[0;31m#读取与查询\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mJines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_excel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mJines_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     11\u001b[0m \u001b[0;31m# 查询有选项的内容\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     12\u001b[0m \u001b[0mpattern\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mr'(?<=\\().*?(?=\\))'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    209\u001b[0m                 \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    210\u001b[0m                     \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnew_arg_name\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_arg_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 211\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    212\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    213\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    329\u001b[0m                     \u001b[0mstacklevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfind_stack_level\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    330\u001b[0m                 )\n\u001b[0;32m--> 331\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    332\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    333\u001b[0m         \u001b[0;31m# error: \"Callable[[VarArg(Any), KwArg(Any)], Any]\" has no\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/excel/_base.py\u001b[0m in \u001b[0;36mread_excel\u001b[0;34m(io, sheet_name, header, names, index_col, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, parse_dates, date_parser, thousands, decimal, comment, skipfooter, convert_float, mangle_dupe_cols, storage_options)\u001b[0m\n\u001b[1;32m    480\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mExcelFile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    481\u001b[0m         \u001b[0mshould_close\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 482\u001b[0;31m         \u001b[0mio\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mExcelFile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage_options\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstorage_options\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    483\u001b[0m     \u001b[0;32melif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    484\u001b[0m         raise ValueError(\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/excel/_base.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, path_or_buffer, engine, storage_options)\u001b[0m\n\u001b[1;32m   1654\u001b[0m                 )\n\u001b[1;32m   1655\u001b[0m                 \u001b[0;32mif\u001b[0m \u001b[0mext\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1656\u001b[0;31m                     raise ValueError(\n\u001b[0m\u001b[1;32m   1657\u001b[0m                         \u001b[0;34m\"Excel file format cannot be determined, you must specify \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1658\u001b[0m                         \u001b[0;34m\"an engine manually.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mValueError\u001b[0m: Excel file format cannot be determined, you must specify an engine manually."
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# txt文件转换为jsonl\n",
        "def parse_to_jsonl(file_path):\n",
        "    with open(file_path, 'r', encoding='utf-8') as f:\n",
        "        lines = iter(f.readlines())\n",
        "    dialogs = []\n",
        "    dialog = {}\n",
        "    option = {}\n",
        "    for line in lines:\n",
        "        line = line.strip()\n",
        "        if line.startswith(\"## 对话\") or line.startswith(\"## 对话组\"):\n",
        "            if dialog and option:\n",
        "                dialog[\"options\"].append(option)\n",
        "                option = {}\n",
        "            if dialog:\n",
        "                dialogs.append(dialog)\n",
        "            dialog = {\"prefix\": \"\", \"options\": []}\n",
        "        elif line.startswith(\"### Prefix\") or line.startswith('**Prefix'):\n",
        "            prefix = next(lines).strip()\n",
        "            ids, categories = search_in_excel(prefix)\n",
        "            # print(ids, categories)\n",
        "            if ids and categories:\n",
        "                dialog[\"id\"] = ids[0]\n",
        "                dialog[\"category\"] = categories[0]\n",
        "            dialog[\"prefix\"] = prefix\n",
        "        elif line.startswith(\"### Option\") or line.startswith('**Option'):\n",
        "            if option:\n",
        "                dialog[\"options\"].append(option)\n",
        "            option = {\"user\": \"\", \"reply\": \"\", \"attribute_change\": \"\"}\n",
        "\n",
        "        elif line.startswith(\"User\") or line.startswith(\"User:\"):\n",
        "            option[\"user\"] = line[5:].strip()\n",
        "        elif line.startswith(\"Reply\") or line.startswith('**Reply:**'):\n",
        "            option[\"reply\"] = next(lines).strip()\n",
        "        elif line.startswith(\"Attribute Change\") or line.startswith('**Attribute Change:**'):\n",
        "            option[\"attribute_change\"] = line[17:].strip()\n",
        "\n",
        "    if option:\n",
        "        dialog[\"options\"].append(option)\n",
        "    if dialog:\n",
        "        dialogs.append(dialog)\n",
        "\n",
        "    with open('emoji_story_23.jsonl', 'a+', encoding=\"utf-8\") as outfile:\n",
        "        for entry in dialogs:\n",
        "            json.dump(entry, outfile, ensure_ascii=False)\n",
        "            outfile.write('\\n')"
      ],
      "metadata": {
        "id": "sghUu4Or-uC4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# 转换为jsonl\n",
        "for filename in os.listdir('events'):\n",
        "    if filename.endswith(\".txt\"):\n",
        "        try:\n",
        "            parse_to_jsonl(f'events/{filename}')\n",
        "        except:\n",
        "            shutil.move(f'move/{filename}', f'error/{filename}')\n",
        "            print(filename)"
      ],
      "metadata": {
        "id": "nBLuoQov_C_5"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}