Spaces:
Runtime error
Runtime error
File size: 19,151 Bytes
19c4ddf 725545d addcc5f 19c4ddf 228fcc0 19c4ddf 3e5a852 19c4ddf 3e5a852 725545d 3e5a852 725545d 3e5a852 725545d 19c4ddf 03200f4 19c4ddf 007806e 19c4ddf 007806e 19c4ddf 007806e 74efa73 007806e 19c4ddf 74efa73 5d94b0f c0aff90 5d94b0f c0aff90 5d94b0f fd16ff8 f30c271 d5eda1c 5d94b0f e731c6b 5d94b0f aa8d774 5d94b0f fd16ff8 e731c6b 5d94b0f 007806e 5d94b0f 1e2802d d5eda1c 19c4ddf 883a17d 19c4ddf 540481d aa7e676 540481d 19c4ddf 883a17d 19c4ddf 5d94b0f 19c4ddf 5d94b0f 19c4ddf 03200f4 19c4ddf 5d94b0f 4533120 19c4ddf 03200f4 19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import gradio as gr
import torch
import numpy as np
from functools import partial
from typing import Optional
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.diffusion.sample import sample_latents
from shap_e.models.download import load_model, load_config, load_checkpoint
from shap_e.models.configs import model_from_config
from shap_e.util.notebooks import create_pan_cameras, decode_latent_mesh
import trimesh
import torch.nn as nn
import os
import random
import warnings
from huggingface_hub import hf_hub_download
import hashlib
import spaces
import sys
sys.tracebacklimit = 0
def set_seed(seed=1024):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def freeze_params(params):
for param in params:
param.requires_grad = False
class Blocks(gr.Blocks):
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
self.extra_configs = {
'thumbnail': kwargs.pop('thumbnail', ''),
'url': kwargs.pop('url', 'https://gradio.app/'),
'creator': kwargs.pop('creator', '@teamGradio'),
}
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
warnings.filterwarnings("ignore")
def get_config_file(self):
config = super(Blocks, self).get_config_file()
for k, v in self.extra_configs.items():
config[k] = v
return config
def main():
css = """
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
{
height: var(--height) !important;
max-height: var(--height) !important;
min-height: var(--height) !important;
}
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
.tooltip {
color: #555;
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 400px;
background-color: #555;
color: #fff;
text-align: center;
padding: 5px;
border-radius: 5px;
position: absolute;
z-index: 1; /* Set z-index to 1 */
left: 10px;
top: 100%;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
z-index: 9999; /* Set a high z-index value when hovering */
}
"""
rescale_js = """
function(x) {
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
const image_width = root.querySelector('#img2img_image').clientWidth;
const target_height = parseInt(image_width * image_scale);
document.body.style.setProperty('--height', `${target_height}px`);
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
return x;
}
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("device:", device)
# latent_model = load_model('text300M', device=device)
latent_model = model_from_config(load_config('text300M'), device=device)
# print(model_name, kwargs)
# print(model)
latent_model.load_state_dict(load_checkpoint('text300M', device='cpu'))
latent_model.eval()
print("loaded latent model")
latent_model.to(device)
# xm = load_model('transmitter', device=device)
xm = model_from_config(load_config('transmitter'), device=device)
# print(model_name, kwargs)
# print(model)
xm.load_state_dict(load_checkpoint('transmitter', device='cpu'))
xm.eval()
print("loaded transmitter")
xm.to(device)
diffusion = diffusion_from_config(load_config('diffusion'))
freeze_params(xm.parameters())
models = dict()
initial_noise = dict()
noise_start_t = dict()
editing_types = ['rainbow', 'santa_hat', 'lego', 'golden', 'wooden', 'cyber']
# prepare models
for editing_type in editing_types:
tmp_model = model_from_config(load_config('text300M'), device=device)
# print(model_name, kwargs)
# print(model)
# xm = load_model('transmitter', de
with torch.no_grad():
new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=tmp_model.wrapped.input_proj.weight.dtype)
new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight))
new_proj.weight[:, :1024].copy_(tmp_model.wrapped.input_proj.weight) #
new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias))
new_proj.bias[:1024].copy_(tmp_model.wrapped.input_proj.bias)
tmp_model.wrapped.input_proj = new_proj
ckp = torch.load(hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(editing_type)), map_location='cpu')
tmp_model.load_state_dict(ckp['model'])
tmp_model.eval()
print("loaded latent model")
tmp_model.to(device)
noise_initial = ckp['initial_noise']['noise'].to(device)
initial_noise[editing_type] = noise_initial
noise_start_t[editing_type] = ckp['t_start']
models[editing_type] = tmp_model
@torch.no_grad()
def optimize_all(prompt, instruction,
rand_seed):
print("Optimizing all")
state = {}
out_gen_1, out_gen_2, out_gen_3, out_gen_4, state = generate_3d_with_shap_e(prompt, rand_seed, state)
edited_1, edited_2, edited_3, edited_4, state = _3d_editing(instruction, rand_seed, state)
print(state)
return out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4
@spaces.GPU(duration=180)
@torch.no_grad()
def generate_3d_with_shap_e(prompt, rand_seed, state):
print("Check if I can use partial")
set_seed(rand_seed)
batch_size = 4
guidance_scale = 15.0
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
print("prompt: ", prompt, "rand_seed: ", rand_seed, "state:", state)
latents = sample_latents(
batch_size=batch_size,
model=latent_model,
diffusion=diffusion,
guidance_scale=guidance_scale,
model_kwargs=dict(texts=[prompt] * batch_size),
progress=True,
clip_denoised=True,
use_fp16=True,
use_karras=True,
karras_steps=64,
sigma_min=1e-3,
sigma_max=160,
s_churn=0,
)
prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
mesh_path = []
output_path = './logs'
os.makedirs(os.path.join(output_path, 'source'), exist_ok=True)
state['latent'] = []
state['prompt'] = prompt
state['rand_seed_1'] = rand_seed
for i, latent in enumerate(latents):
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
t_obj = decode_latent_mesh(xm, latent).tri_mesh()
with open(output_path_tmp, 'w') as f:
t_obj.write_obj(f)
mesh = trimesh.load_mesh(output_path_tmp)
angle = np.radians(180)
axis = [0, 1, 0]
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
mesh.apply_transform(rotation_matrix)
angle = np.radians(90)
axis = [1, 0, 0]
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
mesh.apply_transform(rotation_matrix)
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
mesh.export(output_path_tmp)
state['latent'].append(latent.clone().detach().cpu())
mesh_path.append(output_path_tmp)
del latents
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
@spaces.GPU(duration=180)
@torch.no_grad()
def _3d_editing(instruction, rand_seed, state):
set_seed(rand_seed)
mesh_path = []
prompt = state['prompt']
rand_seed_1 = state['rand_seed_1']
print("prompt: ", prompt, "rand_seed: ", rand_seed, "instruction:", instruction, "state:", state)
prompt_hash = str(hashlib.sha256(
(prompt + '_' + str(rand_seed_1) + '_' + instruction + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
if 'santa' in instruction:
e_type = 'santa_hat'
elif 'rainbow' in instruction:
e_type = 'rainbow'
elif 'gold' in instruction:
e_type = 'golden'
elif 'lego' in instruction:
e_type = 'lego'
elif 'wooden' in instruction:
e_type = 'wooden'
elif 'cyber' in instruction:
e_type = 'cyber'
model = models[e_type]
print("model", model)
# model = load_model('text300M', device=device)
# with torch.no_grad():
# new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=model.wrapped.input_proj.weight.dtype)
# new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight))
# new_proj.weight[:, :1024].copy_(model.wrapped.input_proj.weight) #
# new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias))
# new_proj.bias[:1024].copy_(model.wrapped.input_proj.bias)
# model.wrapped.input_proj = new_proj
#
# ckp = torch.load(
# hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(e_type)),
# map_location='cpu')
# model.load_state_dict(ckp['model'])
noise_initial = initial_noise[e_type].to(device)
noise_start_t_e_type = noise_start_t[e_type]
general_save_path = './logs/edited'
os.makedirs(general_save_path, exist_ok=True)
for i, latent in enumerate(state['latent']):
latent = latent.to(device)
text_embeddings_clip = model.cached_model_kwargs(1, dict(texts=[instruction]))
print("shape of latent: ", latent.clone().unsqueeze(0).shape, "instruction: ", instruction)
ref_latent = latent.clone().unsqueeze(0).to(device)
t_1 = torch.randint(noise_start_t_e_type, noise_start_t_e_type + 1, (1,), device=device).long()
noise_input = diffusion.q_sample(ref_latent, t_1, noise=noise_initial)
print("noise_input:", noise_input.device)
out_1 = diffusion.p_mean_variance(model, noise_input, t_1, clip_denoised=True,
model_kwargs=text_embeddings_clip,
condition_latents=ref_latent)
updated_latents = out_1['pred_xstart']
if 'santa' in instruction:
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.25]).to(device)
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1]).to(device)
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
else:
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
for latent_idx, updated_latent in enumerate(updated_latents):
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
t = decode_latent_mesh(xm, updated_latent).tri_mesh()
with open(output_path, 'w') as f:
t.write_obj(f)
mesh = trimesh.load_mesh(output_path)
angle = np.radians(180)
axis = [0, 1, 0]
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
mesh.apply_transform(rotation_matrix)
angle = np.radians(90)
axis = [1, 0, 0]
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
mesh.apply_transform(rotation_matrix)
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
mesh.export(output_path)
mesh_path.append(output_path)
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
# del models
# models = None
with Blocks(
css=css,
analytics_enabled=False,
title="SHAPE-EDITOR demo",
) as demo:
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px"> <span style="font-size: 140%">S</span>HAP-<span style="font-size: 140%">E</span>DITOR: Instruction-guided <br> Latent 3D Editing in Seconds</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://silent-chen.github.io/Shap-Editor/" target="_blank">Project Page</a>]
[<a href="http://arxiv.org/abs/2312.09246" target="_blank">Paper</a>]
[<a href="https://github.com/silent-chen/Shap-Editor" target="_blank">GitHub</a>]
</span>
</p>
"""
state = gr.State({})
gr.HTML(description)
shap_editor_hint = """<span style="font-size: 20px; font-weight: bold"">Hint:</span>
<br>
<span style="font-size: 16px">
1. After generating and editing, it takes some time to display the 3D model. Please wait for a while. <br>
2. The original Shap-E is not good at compositional generation. Using prompts contain one object can usually get good results. Please see the <a href="https://arxiv.org/abs/2305.02463" target="_blank">original paper</a> for more details. <br>
3. The processing time in the demo including the time of preprocessing, model loading and extracting the mesh, making it slower then reported. Besides, the demo is currently running on A10 which is slower than the tested A6000 GPU. <br>
4. If you don't get satisfying generating/editing results, please try to change the random seed in Advanced Options.
</span>
"""
gr.HTML(shap_editor_hint)
with gr.Column():
with gr.Column():
gr.HTML('<span style="font-size: 20px; font-weight: bold">Step 1: generate original 3D objects using Shap-E.</span>')
prompt = gr.Textbox(
label="Text prompt for initial 3D generation", lines=1
)
gen_btn = gr.Button(value='Generate', scale=1)
with gr.Column():
gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated 3D objects</span>')
with gr.Row():
out_gen_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 1)")
out_gen_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 1)")
out_gen_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 1)")
out_gen_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 1)")
with gr.Column(scale=1):
gr.HTML('<span style="font-size: 20px; font-weight: bold">Step 2: apply 3D editing with S</span>HAP-<span style="font-size: 140%">E</span>DITOR.</span>')
editing_choice = gr.Dropdown(
["Add a santa hat to it", "Make it look like made of gold", "Make the color of it look like rainbow", "Make it in cyberpunk style", "Make it wooden", "Make it look like make of lego"], value='Add a santa hat to it', multiselect=False, label="Editing effects", info="Select specific editing you want to apply!"
),
apply_btn = gr.Button(value='Editing', scale=1)
with gr.Column(scale=3):
gr.HTML('<span style="font-size: 20px; font-weight: bold">Edited 3D objects</span>')
with gr.Row():
edited_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 2)")
edited_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 2)")
edited_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 2)")
edited_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 2)")
with gr.Accordion("Advanced Options", open=False):
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random seed")
gen_btn.click(
fn=generate_3d_with_shap_e,
inputs=[prompt, rand_seed, state],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=False)
apply_btn.click(
fn=_3d_editing,
inputs=[
editing_choice[0], rand_seed, state
],
outputs=[edited_1, edited_2, edited_3, edited_4, state],
queue=True
)
print("Generate examples...")
with gr.Column():
gr.Examples(
examples=[
["a corgi",
"Make the color of it look like rainbow",
456,
],
["a penguin",
"Make it look like make of lego",
214,
],
],
inputs=[prompt, editing_choice[0], rand_seed],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4],
fn=optimize_all,
cache_examples=True,
)
demo.queue(max_size=10, api_open=False)
demo.launch(share=False, show_api=False, show_error=True)
if __name__ == '__main__':
main() |