Spaces:
Runtime error
Runtime error
# Copyright (c) Alibaba Cloud. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Generation support.""" | |
from typing import Tuple, List, Union, Iterable | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from transformers import PreTrainedTokenizer | |
from transformers import logging | |
from transformers.generation import LogitsProcessor | |
logger = logging.get_logger(__name__) | |
# Types. | |
HistoryType = List[Tuple[str, str]] | |
TokensType = List[int] | |
BatchTokensType = List[List[int]] | |
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType: | |
for tokens in batch: | |
context_length = len(tokens) | |
if context_length < seq_length: | |
tokens.extend([pad_id] * (seq_length - context_length)) | |
return batch | |
def get_ltor_masks_and_position_ids( | |
data, | |
eod_token, | |
reset_position_ids, | |
reset_attention_mask, | |
eod_mask_loss, | |
): | |
"""Build masks and position id for left to right model.""" | |
# Extract batch size and sequence length. | |
micro_batch_size, seq_length = data.size() | |
# Attention mask (lower triangular). | |
if reset_attention_mask: | |
att_mask_batch = micro_batch_size | |
else: | |
att_mask_batch = 1 | |
attention_mask = torch.tril( | |
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device) | |
).view(att_mask_batch, 1, seq_length, seq_length) | |
# Loss mask. | |
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) | |
if eod_mask_loss: | |
loss_mask[data == eod_token] = 0.0 | |
# Position ids. | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(data) | |
# We need to clone as the ids will be modifed based on batch index. | |
if reset_position_ids: | |
position_ids = position_ids.clone() | |
if reset_position_ids or reset_attention_mask: | |
# Loop through the batches: | |
for b in range(micro_batch_size): | |
# Find indecies where EOD token is. | |
eod_index = position_ids[b, data[b] == eod_token] | |
# Detach indecies from positions if going to modify positions. | |
if reset_position_ids: | |
eod_index = eod_index.clone() | |
# Loop through EOD indecies: | |
prev_index = 0 | |
for j in range(eod_index.size()[0]): | |
i = eod_index[j] | |
# Mask attention loss. | |
if reset_attention_mask: | |
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0 | |
# Reset positions. | |
if reset_position_ids: | |
position_ids[b, (i + 1) :] -= i + 1 - prev_index | |
prev_index = i + 1 | |
# Convert attention mask to binary: | |
attention_mask = attention_mask < 0.5 | |
return attention_mask, loss_mask, position_ids | |
def get_batch(context_tokens: torch.LongTensor, eod_id: int): | |
"""Generate batch from context tokens.""" | |
# Move to GPU. | |
tokens = context_tokens.contiguous().to(context_tokens.device) | |
# Get the attention mask and postition ids. | |
attention_mask, _, position_ids = get_ltor_masks_and_position_ids( | |
tokens, | |
eod_id, | |
reset_position_ids=False, | |
reset_attention_mask=False, | |
eod_mask_loss=False, | |
) | |
return tokens, attention_mask, position_ids | |
def get_stop_words_ids(chat_format, tokenizer): | |
if chat_format == "raw": | |
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]] | |
elif chat_format == "chatml": | |
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] | |
else: | |
raise NotImplementedError(f"Unknown chat format {chat_format!r}") | |
return stop_words_ids | |
def make_context( | |
tokenizer: PreTrainedTokenizer, | |
query: str, | |
history: List[Tuple[str, str]] = None, | |
system: str = "", | |
max_window_size: int = 6144, | |
chat_format: str = "chatml", | |
): | |
if history is None: | |
history = [] | |
if chat_format == "chatml": | |
im_start, im_end = "<|im_start|>", "<|im_end|>" | |
im_start_tokens = [tokenizer.im_start_id] | |
im_end_tokens = [tokenizer.im_end_id] | |
nl_tokens = tokenizer.encode("\n") | |
def _tokenize_str(role, content): | |
return f"{role}\n{content}", tokenizer.encode( | |
role, allowed_special=set(tokenizer.IMAGE_ST) | |
) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.IMAGE_ST)) | |
system_text, system_tokens_part = _tokenize_str("system", system) | |
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens | |
raw_text = "" | |
context_tokens = [] | |
for turn_query, turn_response in reversed(history): | |
query_text, query_tokens_part = _tokenize_str("user", turn_query) | |
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens | |
if turn_response is not None: | |
response_text, response_tokens_part = _tokenize_str( | |
"assistant", turn_response | |
) | |
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens | |
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens | |
prev_chat = ( | |
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" | |
) | |
else: | |
next_context_tokens = nl_tokens + query_tokens + nl_tokens | |
prev_chat = f"\n{im_start}{query_text}{im_end}\n" | |
current_context_size = ( | |
len(system_tokens) + len(next_context_tokens) + len(context_tokens) | |
) | |
if current_context_size < max_window_size: | |
context_tokens = next_context_tokens + context_tokens | |
raw_text = prev_chat + raw_text | |
else: | |
break | |
context_tokens = system_tokens + context_tokens | |
raw_text = f"{im_start}{system_text}{im_end}" + raw_text | |
context_tokens += ( | |
nl_tokens | |
+ im_start_tokens | |
+ _tokenize_str("user", query)[1] | |
+ im_end_tokens | |
+ nl_tokens | |
+ im_start_tokens | |
+ tokenizer.encode("assistant") | |
+ nl_tokens | |
) | |
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" | |
elif chat_format == "raw": | |
raw_text = query | |
context_tokens = tokenizer.encode(raw_text) | |
else: | |
raise NotImplementedError(f"Unknown chat format {chat_format!r}") | |
return raw_text, context_tokens | |
def _decode_default( | |
tokens: List[int], | |
*, | |
stop_words: List[str], | |
eod_words: List[str], | |
tokenizer: PreTrainedTokenizer, | |
raw_text_len: int, | |
verbose: bool = False, | |
return_end_reason: bool = False, | |
errors: str='replace', | |
): | |
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:] | |
if verbose: | |
print("\nRaw Generate: ", trim_decode_tokens) | |
end_reason = f"Gen length {len(tokens)}" | |
for stop_word in stop_words: | |
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() | |
for eod_word in eod_words: | |
if eod_word in trim_decode_tokens: | |
end_reason = f"Gen {eod_word!r}" | |
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0] | |
trim_decode_tokens = trim_decode_tokens.strip() | |
if verbose: | |
print("\nEnd Reason:", end_reason) | |
print("\nGenerate: ", trim_decode_tokens) | |
if return_end_reason: | |
return trim_decode_tokens, end_reason | |
else: | |
return trim_decode_tokens | |
def _decode_chatml( | |
tokens: List[int], | |
*, | |
stop_words: List[str], | |
eod_token_ids: List[int], | |
tokenizer: PreTrainedTokenizer, | |
raw_text_len: int, | |
context_length: int, | |
verbose: bool = False, | |
return_end_reason: bool = False, | |
errors: str='replace' | |
): | |
end_reason = f"Gen length {len(tokens)}" | |
eod_token_idx = context_length | |
for eod_token_idx in range(context_length, len(tokens)): | |
if tokens[eod_token_idx] in eod_token_ids: | |
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}" | |
break | |
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:] | |
if verbose: | |
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:]) | |
print("\nRaw Generate:", trim_decode_tokens) | |
print("\nEnd Reason:", end_reason) | |
for stop_word in stop_words: | |
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() | |
trim_decode_tokens = trim_decode_tokens.strip() | |
if verbose: | |
print("\nGenerate:", trim_decode_tokens) | |
if return_end_reason: | |
return trim_decode_tokens, end_reason | |
else: | |
return trim_decode_tokens | |
def decode_tokens( | |
tokens: Union[torch.LongTensor, TokensType], | |
tokenizer: PreTrainedTokenizer, | |
raw_text_len: int, | |
context_length: int, | |
chat_format: str, | |
verbose: bool = False, | |
return_end_reason: bool = False, | |
errors: str="replace", | |
) -> str: | |
if torch.is_tensor(tokens): | |
tokens = tokens.cpu().numpy().tolist() | |
if chat_format == "chatml": | |
return _decode_chatml( | |
tokens, | |
stop_words=[], | |
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], | |
tokenizer=tokenizer, | |
raw_text_len=raw_text_len, | |
context_length=context_length, | |
verbose=verbose, | |
return_end_reason=return_end_reason, | |
errors=errors, | |
) | |
elif chat_format == "raw": | |
return _decode_default( | |
tokens, | |
stop_words=["<|endoftext|>"], | |
eod_words=["<|endoftext|>"], | |
tokenizer=tokenizer, | |
raw_text_len=raw_text_len, | |
verbose=verbose, | |
return_end_reason=return_end_reason, | |
errors=errors, | |
) | |
else: | |
raise NotImplementedError(f"Unknown chat format {chat_format!r}") | |
class StopWordsLogitsProcessor(LogitsProcessor): | |
""" | |
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration. | |
Args: | |
stop_words_ids (:obj:`List[List[int]]`): | |
List of list of token ids of stop ids. In order to get the tokens of the words | |
that should not appear in the generated text, use :obj:`tokenizer(bad_word, | |
add_prefix_space=True).input_ids`. | |
eos_token_id (:obj:`int`): | |
The id of the `end-of-sequence` token. | |
""" | |
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int): | |
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0: | |
raise ValueError( | |
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}." | |
) | |
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids): | |
raise ValueError( | |
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}." | |
) | |
if any( | |
any( | |
(not isinstance(token_id, (int, np.integer)) or token_id < 0) | |
for token_id in stop_word_ids | |
) | |
for stop_word_ids in stop_words_ids | |
): | |
raise ValueError( | |
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}." | |
) | |
self.stop_words_ids = list( | |
filter( | |
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids | |
) | |
) | |
self.eos_token_id = eos_token_id | |
for stop_token_seq in self.stop_words_ids: | |
assert ( | |
len(stop_token_seq) > 0 | |
), "Stop words token sequences {} cannot have an empty list".format( | |
stop_words_ids | |
) | |
def __call__( | |
self, input_ids: torch.LongTensor, scores: torch.FloatTensor | |
) -> torch.FloatTensor: | |
stopped_samples = self._calc_stopped_samples(input_ids) | |
for i, should_stop in enumerate(stopped_samples): | |
if should_stop: | |
scores[i, self.eos_token_id] = float(2**15) | |
return scores | |
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool: | |
if len(tokens) == 0: | |
# if bad word tokens is just one token always ban it | |
return True | |
elif len(tokens) > len(prev_tokens): | |
# if bad word tokens are longer then prev input_ids they can't be equal | |
return False | |
elif prev_tokens[-len(tokens) :].tolist() == tokens: | |
# if tokens match | |
return True | |
else: | |
return False | |
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]: | |
stopped_samples = [] | |
for prev_input_ids_slice in prev_input_ids: | |
match = False | |
for stop_token_seq in self.stop_words_ids: | |
if self._tokens_match(prev_input_ids_slice, stop_token_seq): | |
# if tokens do not match continue | |
match = True | |
break | |
stopped_samples.append(match) | |
return stopped_samples | |
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")): | |
"""This function has been mostly taken from huggingface conversational | |
ai code at | |
https://medium.com/huggingface/how-to-build-a-state-of-the-art- | |
conversational-ai-with-transfer-learning-2d818ac26313""" | |
if top_k > 0: | |
# Remove all tokens with a probability less than the | |
# last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
# Cconvert to 1D | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token | |
# above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
for i in range(sorted_indices.size(0)): | |
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] | |
logits[i][indices_to_remove] = filter_value | |
return logits | |
def switch(val1, val2, boolean): | |
boolean = boolean.type_as(val1) | |
return (1 - boolean) * val1 + boolean * val2 | |