Spaces:
Runtime error
Runtime error
import importlib | |
import math | |
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.cuda.amp import autocast | |
from torch.nn import CrossEntropyLoss | |
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList | |
from transformers.generation.logits_process import LogitsProcessorList | |
if TYPE_CHECKING: | |
from transformers.generation.streamers import BaseStreamer | |
from transformers.generation.utils import GenerateOutput | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training | |
try: | |
from einops import rearrange | |
except ImportError: | |
rearrange = None | |
from torch import nn | |
from monkey_model.modeling_qwen import QWenModel,QWenPreTrainedModel,QWenLMHeadModel | |
SUPPORT_CUDA = torch.cuda.is_available() | |
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported() | |
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7 | |
logger = logging.get_logger(__name__) | |
class MonkeyModel(QWenModel): | |
def __init__(self, config): | |
super().__init__(config) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
if past_key_values is None and torch.any(input_ids == self.config.visual['image_start_id']): | |
bos_pos = torch.where(input_ids == self.config.visual['image_start_id']) | |
eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1) | |
assert (bos_pos[0] == eos_pos[0]).all() | |
img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1) | |
images = [] | |
for i, a, b in img_pos: | |
image = input_ids[i][a + 1 : b - 1].tolist() | |
image = image[ : image.index(self.config.visual['image_start_id'] + 2)] | |
images.append(bytes(image).decode('utf-8')) | |
windows,images_448 = self.visual.encode(images) | |
patch_list = [] | |
lora_idx = 0 | |
for col in windows: | |
for image_patch in col: | |
patch_list.append(self.visual(image_patch,idx=lora_idx)) | |
lora_idx += 1 | |
global_feat = self.visual(images_448) | |
local_feat = torch.cat(patch_list,dim=1) | |
images = torch.cat([local_feat,global_feat],dim=1) | |
assert images.shape[0] == len(images) | |
else: | |
images = None | |
return super().forward(input_ids, | |
past_key_values, | |
attention_mask, | |
token_type_ids, | |
position_ids, | |
head_mask,inputs_embeds, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
use_cache, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
images) | |
class MonkeyLMHeadModel(QWenLMHeadModel): | |
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"] | |
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
assert ( | |
config.bf16 + config.fp16 + config.fp32 <= 1 | |
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true" | |
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0 | |
if autoset_precision: | |
if SUPPORT_BF16: | |
logger.warn( | |
"The model is automatically converting to bf16 for faster inference. " | |
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"." | |
) | |
config.bf16 = True | |
elif SUPPORT_FP16: | |
logger.warn( | |
"The model is automatically converting to fp16 for faster inference. " | |
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"." | |
) | |
config.fp16 = True | |
else: | |
config.fp32 = True | |
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16: | |
logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".") | |
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16: | |
logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster") | |
if config.fp32: | |
if SUPPORT_BF16: | |
logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".") | |
elif SUPPORT_FP16: | |
logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".") | |
self.transformer = MonkeyModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
if config.bf16: | |
self.transformer.bfloat16() | |
self.lm_head.bfloat16() | |
if config.fp16: | |
self.transformer.half() | |
self.lm_head.half() | |
self.post_init() | |