File size: 15,056 Bytes
d28c270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

from argparse import ArgumentParser
from pathlib import Path

import copy
import gradio as gr
import os
import re
import secrets
import tempfile

from PIL import Image
from monkey_model.modeling_monkey import MonkeyLMHeadModel
from monkey_model.tokenization_qwen import QWenTokenizer
from monkey_model.configuration_monkey import MonkeyConfig

import shutil
from pathlib import Path
import json
DEFAULT_CKPT_PATH = 'echo840/Monkey' # '/home/zhangli/demo/'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
title_markdown = ("""
# Welcome to Monkey

Hello! I'm Monkey, a Large Language and Vision Assistant. Before talking to me, please read the **Operation Guide** and **Terms of Use**.

> Note: This demo represents a more advanced iteration of the chat system, building upon the previous version to deliver an enhanced interactive experience. As a result, we cannot guarantee that the question-answering scenarios presented in the paper can be replicated accurately using this updated version.

## Operation Guide

Click the **Upload** button to upload an image. Then, you can get Monkey's answer in two ways:
 - Click the **Generate** and Monkey will generate a description of the image.
 - Enter the question in the dialog box, click the **Submit**, and Monkey will answer the question based on the image.
 - Click **Clear History** to clear the current image and Q&A content.

""")

policy_markdown = ("""
## Terms of Use

By using this service, users are required to agree to the following terms:

 - Monkey is for research use only and unauthorized commercial use is prohibited. For any query, please contact the author.
 - Monkey's generation capabilities are limited, so we recommend that users do not rely entirely on its answers.
 - Monkey's security measures are limited, so we cannot guarantee that the output is completely appropriate. We strongly recommend that users do not intentionally guide Monkey to generate harmful content, including hate speech, discrimination, violence, pornography, deception, etc.

""")

# ## Some Prompt Examples

# In order to generate more detailed captions, we provide some input examples so that you can conduct more interesting explorations.

#  - Generate the detailed caption in English.
#  - Explain the visual content of the image in great detail.
#  - Analyze the image in a comprehensive and detailed manner.
#  - Describe the image in as much detail as possible in English without duplicating it.
#  - Describe the image in as much detail as possible in English, including as many elements from the image as possible, but without repetition.


def _get_args():
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")

    parser.add_argument("--share", action="store_true", default=True,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=8000,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args


def _load_model_tokenizer(args):
    tokenizer = QWenTokenizer.from_pretrained(
        args.checkpoint_path, trust_remote_code=True)

    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "cuda"

    model = MonkeyLMHeadModel.from_pretrained(
        args.checkpoint_path,
        device_map=device_map,
        trust_remote_code=True,
    ).eval()
    # model.generation_config = GenerationConfig.from_pretrained(
    #     args.checkpoint_path, trust_remote_code=True, resume_download=True,
    # )
    tokenizer.padding_side = 'left'
    tokenizer.pad_token_id = tokenizer.eod_id
    return model, tokenizer


def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def _launch_demo(args, model, tokenizer):
    def predict(_chatbot, task_history):
        chat_query = _chatbot[-1][0]
        query = task_history[-1][0]
        question =  _parse_text(query)
        # print("User: " + _parse_text(query))
        full_response = ""


        img_path = _chatbot[0][0][0]
        try:
            Image.open(img_path)
        except:
            response = "Please upload a picture."
            _chatbot[-1] = (_parse_text(chat_query), response)
            full_response = _parse_text(response)

            task_history[-1] = (query, full_response)
            # print("Monkey: " + _parse_text(full_response))
            return _chatbot

        query = f'<img>{img_path}</img> {question} Answer: '
        print(query)

        all_history = query
        all_history_0 = ''
        if len(_chatbot) > 2:
            all_history = ''
            for conv in _chatbot[1:-1]:
                q = conv[0]
                a = conv[1]
                all_history_0 = all_history + f'{q} Answer: {a} '
            all_history = all_history_0 + f'<img>{img_path}</img> ' # 1288 tokens
            all_history = all_history + f'{question} Answer: '
            print(all_history)
            tokens = all_history.split()
            last_2048_tokens = tokens[-760:]
            all_history = " ".join(last_2048_tokens)
            print(all_history)

        # input_ids = tokenizer(query, return_tensors='pt', padding='longest')
        input_ids = tokenizer(all_history, return_tensors='pt', padding='longest')

        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids
        
        pred = model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=False,
            num_beams=1,
            max_new_tokens=512,
            min_new_tokens=1,
            length_penalty=3,
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=tokenizer.eod_id,
            eos_token_id=tokenizer.eod_id,
            )
        response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()

        _chatbot[-1] = (_parse_text(chat_query), response)
        full_response = _parse_text(response)

        # with open('./history/question_answer.jsonl', 'a',encoding="utf-8") as file:  # 使用 'a' 模式打开文件,表示以追加模式写入
        #     data = {query:response}
        #     json_line = json.dumps(data)
        #     file.write(json_line + '\n')
        # with open('./history/all_history_together.jsonl', 'a',encoding="utf-8") as file:  # 使用 'a' 模式打开文件,表示以追加模式写入
        #     data = f'<img>{img_path}</img> ' + all_history_0 + f'{question} Answer: {full_response}'
        #     json_line = json.dumps(data)
        #     file.write(json_line + '\n')
        
        
        task_history[-1] = (query, full_response)
        print("Monkey: " + _parse_text(full_response))
        return _chatbot
    
    def caption(_chatbot, task_history):

        query = "Describe the image in as much detail as possible in English, including as many elements from the image as possible, but without repetition. Answer: "
        chat_query = "Describe the image in as much detail as possible in English, including as many elements from the image as possible, but without repetition. Answer: "

        question =  _parse_text(query)
        print("User: " + _parse_text(query))

        full_response = ""
        
        try:
            img_path = _chatbot[0][0][0]
            Image.open(img_path)
        except:
            response = "Please upload a picture."

            _chatbot.append((None, response))
            full_response = _parse_text(response)

            task_history.append((None, full_response))
            print("Monkey: " + _parse_text(full_response))
            return _chatbot
        img_path = _chatbot[0][0][0]
        query = f'<img>{img_path}</img> {chat_query} '
        print(query)
        input_ids = tokenizer(query, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids
        
        pred = model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=True,
            temperature=0.7,
            max_new_tokens=250,
            min_new_tokens=1,
            length_penalty=3,
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=tokenizer.eod_id,
            eos_token_id=tokenizer.eod_id,
            )
        response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()

        _chatbot.append((None, response))
        full_response = _parse_text(response)

        task_history.append((None, full_response))
        print("Monkey: " + _parse_text(full_response))
        return _chatbot
   
    def add_text(history, task_history, text):
        task_text = text
        if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
            task_text = text[:-1]
        history = history + [(_parse_text(text), None)]
        task_history = task_history + [(task_text, None)]
        # print(history, task_history, text)
        return history, task_history, ""

    def add_file(history, task_history, file):
        save_path  = os.path.join("./history/test_image",file.name.split("/")[-2])
        Path(save_path).mkdir(exist_ok=True,parents=True)
        shutil.copy(file.name,save_path)
        history =  [((file.name,), None)]
        task_history = [((file.name,), None)]
        # print(history, task_history, file)
        return history, task_history

    def reset_user_input():
        return gr.update(value="")

    def reset_state(task_history):
        # with open('./history/all_history_separate.jsonl', 'a',encoding="utf-8") as file:  # 使用 'a' 模式打开文件,表示以追加模式写入
        #     data = task_history
        #     json_line = json.dumps(data)
        #     file.write(json_line + '\n')
        task_history.clear()
        return []


    with gr.Blocks() as demo:
        gr.Markdown(title_markdown)

        chatbot = gr.Chatbot(label='Monkey', elem_classes="control-height", height=600,avatar_images=("./images/logo_user.png","./images/logo_monkey.png"),layout="bubble",bubble_full_width=False,show_copy_button=True)
        query = gr.Textbox(lines=1, label='Input')
        task_history = gr.State([])

        with gr.Row():
            empty_bin = gr.Button("Clear History")
            submit_btn = gr.Button("Submit")
            
            generate_btn_en = gr.Button("Generate")
            addfile_btn = gr.UploadButton("Upload", file_types=["image"])

        submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
            predict, [chatbot, task_history], [chatbot], show_progress=True
        )
        generate_btn_en.click(caption, [chatbot, task_history], [chatbot], show_progress=True)
        
        submit_btn.click(reset_user_input, [], [query])
        empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
        
        addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True,scroll_to_output=True)
        
        with gr.Row(variant="compact"):
            with gr.Column(scale=2):
                with gr.Row():
                    a = gr.Image(Image.open("./images/logo_monkey.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
                    b = gr.Image(Image.open("./images/logo_hust.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
            with gr.Column(scale=4):
                with gr.Row():
                    a = gr.Image(Image.open("./images/logo_monkey.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
                    c = gr.Image(Image.open("./images/logo_vlr.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
                    b = gr.Image(Image.open("./images/logo_hust.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
                    b = gr.Image(Image.open("./images/logo_king.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
            with gr.Column(scale=2):
                with gr.Row():
                    a = gr.Image(Image.open("./images/logo_monkey.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
                    b = gr.Image(Image.open("./images/logo_hust.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
        
        gr.Markdown(policy_markdown)
        
    demo.queue().launch(
        server_name="0.0.0.0",
        server_port=7682,
        share=True
    )


def main():
    args = _get_args()

    model, tokenizer = _load_model_tokenizer(args)
    _launch_demo(args, model, tokenizer)


if __name__ == '__main__':
    main()