Spaces:
Runtime error
Runtime error
File size: 15,056 Bytes
d28c270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from argparse import ArgumentParser
from pathlib import Path
import copy
import gradio as gr
import os
import re
import secrets
import tempfile
from PIL import Image
from monkey_model.modeling_monkey import MonkeyLMHeadModel
from monkey_model.tokenization_qwen import QWenTokenizer
from monkey_model.configuration_monkey import MonkeyConfig
import shutil
from pathlib import Path
import json
DEFAULT_CKPT_PATH = 'echo840/Monkey' # '/home/zhangli/demo/'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
title_markdown = ("""
# Welcome to Monkey
Hello! I'm Monkey, a Large Language and Vision Assistant. Before talking to me, please read the **Operation Guide** and **Terms of Use**.
> Note: This demo represents a more advanced iteration of the chat system, building upon the previous version to deliver an enhanced interactive experience. As a result, we cannot guarantee that the question-answering scenarios presented in the paper can be replicated accurately using this updated version.
## Operation Guide
Click the **Upload** button to upload an image. Then, you can get Monkey's answer in two ways:
- Click the **Generate** and Monkey will generate a description of the image.
- Enter the question in the dialog box, click the **Submit**, and Monkey will answer the question based on the image.
- Click **Clear History** to clear the current image and Q&A content.
""")
policy_markdown = ("""
## Terms of Use
By using this service, users are required to agree to the following terms:
- Monkey is for research use only and unauthorized commercial use is prohibited. For any query, please contact the author.
- Monkey's generation capabilities are limited, so we recommend that users do not rely entirely on its answers.
- Monkey's security measures are limited, so we cannot guarantee that the output is completely appropriate. We strongly recommend that users do not intentionally guide Monkey to generate harmful content, including hate speech, discrimination, violence, pornography, deception, etc.
""")
# ## Some Prompt Examples
# In order to generate more detailed captions, we provide some input examples so that you can conduct more interesting explorations.
# - Generate the detailed caption in English.
# - Explain the visual content of the image in great detail.
# - Analyze the image in a comprehensive and detailed manner.
# - Describe the image in as much detail as possible in English without duplicating it.
# - Describe the image in as much detail as possible in English, including as many elements from the image as possible, but without repetition.
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=True,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def _load_model_tokenizer(args):
tokenizer = QWenTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "cuda"
model = MonkeyLMHeadModel.from_pretrained(
args.checkpoint_path,
device_map=device_map,
trust_remote_code=True,
).eval()
# model.generation_config = GenerationConfig.from_pretrained(
# args.checkpoint_path, trust_remote_code=True, resume_download=True,
# )
tokenizer.padding_side = 'left'
tokenizer.pad_token_id = tokenizer.eod_id
return model, tokenizer
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def _launch_demo(args, model, tokenizer):
def predict(_chatbot, task_history):
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
question = _parse_text(query)
# print("User: " + _parse_text(query))
full_response = ""
img_path = _chatbot[0][0][0]
try:
Image.open(img_path)
except:
response = "Please upload a picture."
_chatbot[-1] = (_parse_text(chat_query), response)
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
# print("Monkey: " + _parse_text(full_response))
return _chatbot
query = f'<img>{img_path}</img> {question} Answer: '
print(query)
all_history = query
all_history_0 = ''
if len(_chatbot) > 2:
all_history = ''
for conv in _chatbot[1:-1]:
q = conv[0]
a = conv[1]
all_history_0 = all_history + f'{q} Answer: {a} '
all_history = all_history_0 + f'<img>{img_path}</img> ' # 1288 tokens
all_history = all_history + f'{question} Answer: '
print(all_history)
tokens = all_history.split()
last_2048_tokens = tokens[-760:]
all_history = " ".join(last_2048_tokens)
print(all_history)
# input_ids = tokenizer(query, return_tensors='pt', padding='longest')
input_ids = tokenizer(all_history, return_tensors='pt', padding='longest')
attention_mask = input_ids.attention_mask
input_ids = input_ids.input_ids
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=512,
min_new_tokens=1,
length_penalty=3,
num_return_sequences=1,
output_hidden_states=True,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
_chatbot[-1] = (_parse_text(chat_query), response)
full_response = _parse_text(response)
# with open('./history/question_answer.jsonl', 'a',encoding="utf-8") as file: # 使用 'a' 模式打开文件,表示以追加模式写入
# data = {query:response}
# json_line = json.dumps(data)
# file.write(json_line + '\n')
# with open('./history/all_history_together.jsonl', 'a',encoding="utf-8") as file: # 使用 'a' 模式打开文件,表示以追加模式写入
# data = f'<img>{img_path}</img> ' + all_history_0 + f'{question} Answer: {full_response}'
# json_line = json.dumps(data)
# file.write(json_line + '\n')
task_history[-1] = (query, full_response)
print("Monkey: " + _parse_text(full_response))
return _chatbot
def caption(_chatbot, task_history):
query = "Describe the image in as much detail as possible in English, including as many elements from the image as possible, but without repetition. Answer: "
chat_query = "Describe the image in as much detail as possible in English, including as many elements from the image as possible, but without repetition. Answer: "
question = _parse_text(query)
print("User: " + _parse_text(query))
full_response = ""
try:
img_path = _chatbot[0][0][0]
Image.open(img_path)
except:
response = "Please upload a picture."
_chatbot.append((None, response))
full_response = _parse_text(response)
task_history.append((None, full_response))
print("Monkey: " + _parse_text(full_response))
return _chatbot
img_path = _chatbot[0][0][0]
query = f'<img>{img_path}</img> {chat_query} '
print(query)
input_ids = tokenizer(query, return_tensors='pt', padding='longest')
attention_mask = input_ids.attention_mask
input_ids = input_ids.input_ids
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=True,
temperature=0.7,
max_new_tokens=250,
min_new_tokens=1,
length_penalty=3,
num_return_sequences=1,
output_hidden_states=True,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
_chatbot.append((None, response))
full_response = _parse_text(response)
task_history.append((None, full_response))
print("Monkey: " + _parse_text(full_response))
return _chatbot
def add_text(history, task_history, text):
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
# print(history, task_history, text)
return history, task_history, ""
def add_file(history, task_history, file):
save_path = os.path.join("./history/test_image",file.name.split("/")[-2])
Path(save_path).mkdir(exist_ok=True,parents=True)
shutil.copy(file.name,save_path)
history = [((file.name,), None)]
task_history = [((file.name,), None)]
# print(history, task_history, file)
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
# with open('./history/all_history_separate.jsonl', 'a',encoding="utf-8") as file: # 使用 'a' 模式打开文件,表示以追加模式写入
# data = task_history
# json_line = json.dumps(data)
# file.write(json_line + '\n')
task_history.clear()
return []
with gr.Blocks() as demo:
gr.Markdown(title_markdown)
chatbot = gr.Chatbot(label='Monkey', elem_classes="control-height", height=600,avatar_images=("./images/logo_user.png","./images/logo_monkey.png"),layout="bubble",bubble_full_width=False,show_copy_button=True)
query = gr.Textbox(lines=1, label='Input')
task_history = gr.State([])
with gr.Row():
empty_bin = gr.Button("Clear History")
submit_btn = gr.Button("Submit")
generate_btn_en = gr.Button("Generate")
addfile_btn = gr.UploadButton("Upload", file_types=["image"])
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
)
generate_btn_en.click(caption, [chatbot, task_history], [chatbot], show_progress=True)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True,scroll_to_output=True)
with gr.Row(variant="compact"):
with gr.Column(scale=2):
with gr.Row():
a = gr.Image(Image.open("./images/logo_monkey.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
b = gr.Image(Image.open("./images/logo_hust.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
with gr.Column(scale=4):
with gr.Row():
a = gr.Image(Image.open("./images/logo_monkey.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
c = gr.Image(Image.open("./images/logo_vlr.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
b = gr.Image(Image.open("./images/logo_hust.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
b = gr.Image(Image.open("./images/logo_king.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False)
with gr.Column(scale=2):
with gr.Row():
a = gr.Image(Image.open("./images/logo_monkey.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
b = gr.Image(Image.open("./images/logo_hust.png"),height=100,width=100,show_download_button=False,label="Generated images", show_label=False,render=False)
gr.Markdown(policy_markdown)
demo.queue().launch(
server_name="0.0.0.0",
server_port=7682,
share=True
)
def main():
args = _get_args()
model, tokenizer = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer)
if __name__ == '__main__':
main()
|