import gradio as gr import os import torch # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch from transformers import RobertaTokenizer, RobertaForSequenceClassification from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Load pre-trained RoBERTa model and tokenizer tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaForSequenceClassification.from_pretrained('roberta-base') # Define a function to analyze text for potential adult content def analyze_adult_content(text): # Tokenize input text inputs = tokenizer(text, return_tensors='pt') # Perform inference outputs = model(**inputs) # Get predicted label (0: Not Adult Content, 1: Adult Content) predicted_label_idx = torch.argmax(outputs.logits).item() predicted_label = model.config.id2label[predicted_label_idx] return predicted_label # Define a function to analyze the sentiment of the text using VADER def analyze_sentiment(text): analyzer = SentimentIntensityAnalyzer() sentiment_scores = analyzer.polarity_scores(text) # Determine sentiment label based on compound score if sentiment_scores['compound'] >= 0.05: sentiment_label = 'Positive' elif sentiment_scores['compound'] <= -0.05: sentiment_label = 'Negative' else: sentiment_label = 'Neutral' return sentiment_label, sentiment_scores # Example text text = "I really enjoy watching this movie, it's so entertaining!" # Analyze adult content adult_content_label = analyze_adult_content(text) print("Adult Content Label:", adult_content_label) def text_analysis(text): # Analyze sentiment sentiment_label, sentiment_scores = analyze_sentiment(text) print("Sentiment Label:", sentiment_label) print("Sentiment Scores:", sentiment_scores) html = '''
{}
{}
{}
{}