# Copyright (c) 2024 Show Lab, National University of Singapore # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import json from datetime import datetime import gradio as gr import torch import spaces from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoProcessor import ast import os import numpy as np from huggingface_hub import hf_hub_download, list_repo_files # flash attention # import subprocess # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Define constants DESCRIPTION = "[ShowUI Demo](https://huggingface.co./showlab/ShowUI-2B)" _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." MIN_PIXELS = 256 * 28 * 28 MAX_PIXELS = 1344 * 28 * 28 # Specify the model repository and destination folder model_repo = "showlab/ShowUI-2B" destination_folder = "./showui-2b" # Ensure the destination folder exists os.makedirs(destination_folder, exist_ok=True) # List all files in the repository files = list_repo_files(repo_id=model_repo) # Download each file to the destination folder for file in files: file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) print(f"Downloaded {file} to {file_path}") model = Qwen2VLForConditionalGeneration.from_pretrained( destination_folder, torch_dtype=torch.bfloat16, device_map="cpu", # attn_implementation="flash_attention_2", ) # Load the processor processor = AutoProcessor.from_pretrained("showlab/ShowUI-2B", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) # Helper functions def draw_point(image_input, point=None, radius=5): """Draw a point on the image.""" if isinstance(image_input, str): image = Image.open(image_input) else: image = Image.fromarray(np.uint8(image_input)) if point: x, y = point[0] * image.width, point[1] * image.height ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') return image def array_to_image_path(image_array, session_id): """Save the uploaded image and return its path.""" if image_array is None: raise ValueError("No image provided. Please upload an image before submitting.") img = Image.fromarray(np.uint8(image_array)) filename = f"{session_id}.png" img.save(filename) return os.path.abspath(filename) def crop_image(image_path, click_xy, crop_factor=0.5): """Crop the image around the click point.""" image = Image.open(image_path) width, height = image.size crop_width, crop_height = int(width * crop_factor), int(height * crop_factor) center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height) left = max(center_x - crop_width // 2, 0) upper = max(center_y - crop_height // 2, 0) right = min(center_x + crop_width // 2, width) lower = min(center_y + crop_height // 2, height) cropped_image = image.crop((left, upper, right, lower)) cropped_image_path = f"cropped_{os.path.basename(image_path)}" cropped_image.save(cropped_image_path) return cropped_image_path @spaces.GPU def run_showui(image, query, session_id, iterations=2): """Main function for iterative inference.""" image_path = array_to_image_path(image, session_id) click_xy = None images_during_iterations = [] # List to store images at each step for _ in range(iterations): messages = [ { "role": "user", "content": [ {"type": "text", "text": _SYSTEM}, {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, {"type": "text", "text": query} ], } ] global model model = model.to("cuda") text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] click_xy = ast.literal_eval(output_text) # Draw point on the current image result_image = draw_point(image_path, click_xy, radius=10) images_during_iterations.append(result_image) # Store the current image # Crop the image for the next iteration image_path = crop_image(image_path, click_xy) return images_during_iterations, str(click_xy) def save_and_upload_data(image, query, session_id, is_example_image, votes=None): """Save the data to a JSON file and upload to S3.""" if is_example_image == "True": return votes = votes or {"upvotes": 0, "downvotes": 0} # Save image locally image_file_name = f"{session_id}.png" image.save(image_file_name) data = { "image_path": image_file_name, "query": query, "votes": votes, "timestamp": datetime.now().isoformat() } local_file_name = f"{session_id}.json" with open(local_file_name, "w") as f: json.dump(data, f) return data def update_vote(vote_type, session_id, is_example_image): """Update the vote count and re-upload the JSON file.""" if is_example_image == "True": return "Example image." local_file_name = f"{session_id}.json" with open(local_file_name, "r") as f: data = json.load(f) if vote_type == "upvote": data["votes"]["upvotes"] += 1 elif vote_type == "downvote": data["votes"]["downvotes"] += 1 with open(local_file_name, "w") as f: json.dump(data, f) return f"Thank you for your {vote_type}!" with open("./assets/showui.png", "rb") as image_file: base64_image = base64.b64encode(image_file.read()).decode("utf-8") examples = [ ["./examples/app_store.png", "Download Kindle.", True], ["./examples/ios_setting.png", "Turn off Do not disturb.", True], # ["./examples/apple_music.png", "Star to favorite.", True], # ["./examples/map.png", "Boston.", True], # ["./examples/wallet.png", "Scan a QR code.", True], # ["./examples/word.png", "More shapes.", True], # ["./examples/web_shopping.png", "Proceed to checkout.", True], # ["./examples/web_forum.png", "Post my comment.", True], # ["./examples/safari_google.png", "Click on search bar.", True], ] learn_more_markdown = (""" ### License Apache License 2.0 """) def build_demo(embed_mode, concurrency_count=1): with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: state_image_path = gr.State(value=None) state_session_id = gr.State(value=None) if not embed_mode: gr.HTML( f"""
ShowUI

ShowUI is a lightweight vision-language-action model for GUI agents.

model arXiv GitHub
""" ) with gr.Row(): with gr.Column(scale=3): imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try ShowUI with screenshots! Windows: [Win + Shift + S] macOS: [Command + Shift + 3] Then upload/paste from clipboard 🤗 """) # Add a slider for iteration count iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps") textbox = gr.Textbox( show_label=True, placeholder="Enter a query (e.g., 'Click Nahant')", label="Query", ) submit_btn = gr.Button(value="Submit", variant="primary") # Examples component gr.Examples( examples=[[e[0], e[1]] for e in examples], inputs=[imagebox, textbox], outputs=[textbox], # Only update the query textbox examples_per_page=3, ) # Add a hidden dropdown to pass the `is_example` flag is_example_dropdown = gr.Dropdown( choices=["True", "False"], value="False", visible=False, label="Is Example Image", ) def set_is_example(query): # Find the example and return its `is_example` flag for _, example_query, is_example in examples: if query.strip() == example_query.strip(): return str(is_example) # Return as string for Dropdown compatibility return "False" textbox.change( set_is_example, inputs=[textbox], outputs=[is_example_dropdown], ) with gr.Column(scale=8): output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True) # output_gallery = gr.Gallery(label="Iterative Refinement") gr.HTML( """

Note: The red point on the output image represents the predicted clickable coordinates.

""" ) output_coords = gr.Textbox(label="Final Clickable Coordinates") gr.HTML( """

🤔 Good or bad? Rate your experience to help us improve! ⬇️

""" ) with gr.Row(elem_id="action-buttons", equal_height=True): upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary") downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary") clear_btn = gr.Button(value="🗑️ Clear", interactive=True) def on_submit(image, query, iterations, is_example_image): if image is None: raise ValueError("No image provided. Please upload an image before submitting.") session_id = datetime.now().strftime("%Y%m%d_%H%M%S") images_during_iterations, click_coords = run_showui(image, query, session_id, iterations) save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image) return images_during_iterations, click_coords, session_id submit_btn.click( on_submit, [imagebox, textbox, iteration_slider, is_example_dropdown], [output_gallery, output_coords, state_session_id], ) clear_btn.click( lambda: (None, None, None, None), inputs=None, outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id], queue=False ) upvote_btn.click( lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image), inputs=[state_session_id, is_example_dropdown], outputs=[], queue=False ) downvote_btn.click( lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image), inputs=[state_session_id, is_example_dropdown], outputs=[], queue=False ) gr.Markdown(learn_more_markdown) return demo if __name__ == "__main__": demo = build_demo(embed_mode=False) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, )