Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,736 Bytes
0469e08 d31c2af 0469e08 44422c2 0469e08 d31c2af 0469e08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import base64
import json
from datetime import datetime
import gradio as gr
import torch
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
from datetime import datetime
import numpy as np
# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co./showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28
# Load the model
model = Qwen2VLForConditionalGeneration.from_pretrained(
"showlab/ShowUI-2B",
torch_dtype=torch.bfloat16,
device_map="auto",
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
# Helper functions
def draw_point(image_input, point=None, radius=5):
"""Draw a point on the image."""
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
return image
def array_to_image_path(image_array):
"""Save the uploaded image and return its path."""
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
return os.path.abspath(filename)
def run_showui(image, query):
"""Main function for inference."""
image_path = array_to_image_path(image)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
{"type": "text", "text": query}
],
}
]
# Prepare inputs for the model
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cuda")
# Generate output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
# Parse the output into coordinates
click_xy = ast.literal_eval(output_text)
# Draw the point on the image
result_image = draw_point(image_path, click_xy, radius=10)
return result_image, str(click_xy)
# Function to record votes
def record_vote(vote_type, image_path, query, action_generated):
"""Record a vote in a JSON file."""
vote_data = {
"vote_type": vote_type,
"image_path": image_path,
"query": query,
"action_generated": action_generated,
"timestamp": datetime.now().isoformat()
}
with open("votes.json", "a") as f:
f.write(json.dumps(vote_data) + "\n")
return f"Your {vote_type} has been recorded. Thank you!"
# Helper function to handle vote recording
def handle_vote(vote_type, image_path, query, action_generated):
"""Handle vote recording by using the consistent image path."""
if image_path is None:
return "No image uploaded. Please upload an image before voting."
return record_vote(vote_type, image_path, query, action_generated)
# Load logo and encode to Base64
with open("./assets/showui.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
# Define layout and UI
def build_demo(embed_mode, concurrency_count=1):
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
# State to store the consistent image path
state_image_path = gr.State(value=None)
if not embed_mode:
# Replace the original description with new content
gr.HTML(
f"""
<div style="display: flex; align-items: center; justify-content: center; margin-bottom: 20px;">
<!-- Logo on the left -->
<a href="https://github.com/showlab/ShowUI" target="_blank" style="margin-right: 20px;">
<img src="data:image/png;base64,{base64_image}" alt="ShowUI Logo" style="width: auto; height: 66px;"/>
</a>
<!-- Links on the right -->
<div style="display: flex; gap: 15px; font-size: 20px;">
<a href="https://github.com/showlab/ShowUI" target="_blank">π [Project Homepage]</a>
<a href="https://github.com/showlab/ShowUI" target="_blank">π€[Code]</a>
<a href="https://huggingface.co./showlab/ShowUI-2B" target="_blank">π[Model]</a>
<a href="https://arxiv.org/" target="_blank">π[Paper]</a>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
# Input components
imagebox = gr.Image(type="numpy", label="Input Screenshot")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter a query (e.g., 'Click Nahant')",
label="Query",
)
submit_btn = gr.Button(value="Submit", variant="primary")
# Placeholder examples
gr.Examples(
examples=[
["./examples/safari_google.png", "Click on search bar."],
["./examples/apple_music.png", "Click on star."],
],
inputs=[imagebox, textbox],
examples_per_page=2
)
with gr.Column(scale=8):
# Output components
output_img = gr.Image(type="pil", label="Output Image")
output_coords = gr.Textbox(label="Clickable Coordinates")
# Buttons for voting, flagging, regenerating, and clearing
with gr.Row(elem_id="action-buttons", equal_height=True):
vote_btn = gr.Button(value="π Vote", variant="secondary")
downvote_btn = gr.Button(value="π Downvote", variant="secondary")
flag_btn = gr.Button(value="π© Flag", variant="secondary")
regenerate_btn = gr.Button(value="π Regenerate", variant="secondary")
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button
# Define button actions
def on_submit(image, query):
"""Handle the submit button click."""
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Generate consistent image path and store it in the state
image_path = array_to_image_path(image)
return run_showui(image, query) + (image_path,)
submit_btn.click(
on_submit,
[imagebox, textbox],
[output_img, output_coords, state_image_path],
)
clear_btn.click(
lambda: (None, None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_img, output_coords, state_image_path], # Clear all outputs
queue=False
)
regenerate_btn.click(
lambda image, query, state_image_path: run_showui(image, query),
[imagebox, textbox, state_image_path],
[output_img, output_coords],
)
# Record vote actions without feedback messages
vote_btn.click(
lambda image_path, query, action_generated: handle_vote(
"upvote", image_path, query, action_generated
),
inputs=[state_image_path, textbox, output_coords],
outputs=[],
queue=False
)
downvote_btn.click(
lambda image_path, query, action_generated: handle_vote(
"downvote", image_path, query, action_generated
),
inputs=[state_image_path, textbox, output_coords],
outputs=[],
queue=False
)
flag_btn.click(
lambda image_path, query, action_generated: handle_vote(
"flag", image_path, query, action_generated
),
inputs=[state_image_path, textbox, output_coords],
outputs=[],
queue=False
)
return demo
# Launch the app
if __name__ == "__main__":
demo = build_demo(embed_mode=False)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
|