|
import os |
|
os.environ["TOKENIZERS_PARALLELISM"] = "true" |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch |
|
import wandb |
|
from models import Showo, MAGVITv2 |
|
from prompting_utils import UniversalPrompting, create_attention_mask_for_mmu, create_attention_mask_for_mmu_vit |
|
from training.utils import get_config, flatten_omega_conf, image_transform |
|
from transformers import AutoTokenizer |
|
from models.clip_encoder import CLIPVisionTower |
|
from transformers import CLIPImageProcessor |
|
|
|
|
|
from training import conversation as conversation_lib |
|
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates["phi1.5"] |
|
SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. " \ |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
SYSTEM_PROMPT_LEN = 28 |
|
|
|
def get_vq_model_class(model_type): |
|
if model_type == "magvitv2": |
|
return MAGVITv2 |
|
else: |
|
raise ValueError(f"model_type {model_type} not supported.") |
|
|
|
if __name__ == '__main__': |
|
|
|
config = get_config() |
|
|
|
resume_wandb_run = config.wandb.resume |
|
run_id = config.wandb.get("run_id", None) |
|
if run_id is None: |
|
resume_wandb_run = False |
|
run_id = wandb.util.generate_id() |
|
config.wandb.run_id = run_id |
|
|
|
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} |
|
|
|
wandb.init( |
|
project="demo", |
|
name=config.experiment.name + '_mmu', |
|
config=wandb_config, |
|
) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left") |
|
|
|
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, |
|
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"), |
|
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob) |
|
|
|
vq_model = get_vq_model_class(config.model.vq_model.type) |
|
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) |
|
vq_model.requires_grad_(False) |
|
vq_model.eval() |
|
|
|
vision_tower_name = "openai/clip-vit-large-patch14-336" |
|
vision_tower = CLIPVisionTower(vision_tower_name).to(device) |
|
clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name) |
|
|
|
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device) |
|
model.eval() |
|
|
|
temperature = 0.8 |
|
top_k = 1 |
|
|
|
file_list = os.listdir(config.mmu_image_root) |
|
responses = ['' for i in range(len(file_list))] |
|
images = [] |
|
config.question = config.question.split(' *** ') |
|
for i, file_name in enumerate(tqdm(file_list)): |
|
image_path = os.path.join(config.mmu_image_root, file_name) |
|
image_ori = Image.open(image_path).convert("RGB") |
|
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device) |
|
image = image.unsqueeze(0) |
|
images.append(image) |
|
|
|
pixel_values = clip_image_processor.preprocess(image_ori, return_tensors="pt")["pixel_values"][0] |
|
|
|
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer) |
|
batch_size = 1 |
|
|
|
for question in config.question: |
|
if config.model.showo.w_clip_vit: |
|
conv = conversation_lib.default_conversation.copy() |
|
conv.append_message(conv.roles[0], question) |
|
conv.append_message(conv.roles[1], None) |
|
prompt_question = conv.get_prompt() |
|
question_input = [] |
|
question_input.append(prompt_question.strip()) |
|
|
|
input_ids_system = [uni_prompting.text_tokenizer(SYSTEM_PROMPT, return_tensors="pt", padding="longest").input_ids |
|
for _ in range(batch_size)] |
|
input_ids_system = torch.stack(input_ids_system, dim=0) |
|
assert input_ids_system.shape[-1] == 28 |
|
input_ids_system = input_ids_system.to(device) |
|
input_ids_system = input_ids_system[0] |
|
|
|
input_ids = [uni_prompting.text_tokenizer(prompt, return_tensors="pt", padding="longest").input_ids |
|
for prompt in question_input] |
|
|
|
input_ids = torch.stack(input_ids) |
|
input_ids = torch.nn.utils.rnn.pad_sequence( |
|
input_ids, batch_first=True, padding_value=uni_prompting.text_tokenizer.pad_token_id |
|
) |
|
input_ids = torch.tensor(input_ids).to(device).squeeze(0) |
|
|
|
input_ids_llava = torch.cat([ |
|
(torch.ones(input_ids.shape[0], 1) *uni_prompting.sptids_dict['<|mmu|>']).to(device), |
|
input_ids_system, |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), |
|
|
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), |
|
input_ids, |
|
], dim=1).long() |
|
|
|
images_embeddings = vision_tower(pixel_values[None]) |
|
images_embeddings = model.mm_projector(images_embeddings) |
|
|
|
text_embeddings = model.showo.model.embed_tokens(input_ids_llava) |
|
|
|
|
|
part1 = text_embeddings[:, :2 + SYSTEM_PROMPT_LEN, :] |
|
part2 = text_embeddings[:, 2 + SYSTEM_PROMPT_LEN:, :] |
|
input_embeddings = torch.cat((part1, images_embeddings, part2), dim=1) |
|
|
|
attention_mask_llava = create_attention_mask_for_mmu_vit(input_embeddings, |
|
system_prompt_len=SYSTEM_PROMPT_LEN) |
|
|
|
cont_toks_list = model.mmu_generate(input_embeddings=input_embeddings, |
|
attention_mask=attention_mask_llava[0].unsqueeze(0), |
|
max_new_tokens=100, |
|
top_k=top_k, |
|
eot_token=uni_prompting.sptids_dict['<|eot|>'] |
|
) |
|
else: |
|
input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[ |
|
'input_ids'] |
|
input_ids = torch.tensor(input_ids).to(device) |
|
|
|
input_ids = torch.cat([ |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device), |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), |
|
image_tokens, |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device), |
|
input_ids |
|
], dim=1).long() |
|
|
|
attention_mask = create_attention_mask_for_mmu(input_ids.to(device), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>'])) |
|
|
|
cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask, |
|
max_new_tokens=100, top_k=top_k, |
|
eot_token=uni_prompting.sptids_dict['<|eot|>']) |
|
|
|
cont_toks_list = torch.stack(cont_toks_list).squeeze()[None] |
|
|
|
text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True) |
|
print(text) |
|
responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n' |
|
|
|
images = torch.cat(images, dim=0) |
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)] |
|
wandb.log({"multimodal understanding": wandb_images}, step=0) |
|
|
|
|