from typing import Any import torch from lightning import LightningModule from torchmetrics import MaxMetric, MeanMetric from torchmetrics.classification.accuracy import Accuracy class MNISTLitModule(LightningModule): """Example of LightningModule for MNIST classification. A LightningModule organizes your PyTorch code into 6 sections: - Initialization (__init__) - Train Loop (training_step) - Validation loop (validation_step) - Test loop (test_step) - Prediction Loop (predict_step) - Optimizers and LR Schedulers (configure_optimizers) Docs: https://lightning.ai/docs/pytorch/latest/common/lightning_module.html """ def __init__( self, net: torch.nn.Module, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler, ): super().__init__() # this line allows to access init params with 'self.hparams' attribute # also ensures init params will be stored in ckpt self.save_hyperparameters(logger=False) self.net = net # loss function self.criterion = torch.nn.CrossEntropyLoss() # metric objects for calculating and averaging accuracy across batches self.train_acc = Accuracy(task="multiclass", num_classes=10) self.val_acc = Accuracy(task="multiclass", num_classes=10) self.test_acc = Accuracy(task="multiclass", num_classes=10) # for averaging loss across batches self.train_loss = MeanMetric() self.val_loss = MeanMetric() self.test_loss = MeanMetric() # for tracking best so far validation accuracy self.val_acc_best = MaxMetric() def forward(self, x: torch.Tensor): return self.net(x) def on_train_start(self): # by default lightning executes validation step sanity checks before training starts, # so it's worth to make sure validation metrics don't store results from these checks self.val_loss.reset() self.val_acc.reset() self.val_acc_best.reset() def model_step(self, batch: Any): x, y = batch logits = self.forward(x) loss = self.criterion(logits, y) preds = torch.argmax(logits, dim=1) return loss, preds, y def training_step(self, batch: Any, batch_idx: int): loss, preds, targets = self.model_step(batch) # update and log metrics self.train_loss(loss) self.train_acc(preds, targets) self.log("train/loss", self.train_loss, on_step=False, on_epoch=True, prog_bar=True) self.log("train/acc", self.train_acc, on_step=False, on_epoch=True, prog_bar=True) # return loss or backpropagation will fail return loss def on_train_epoch_end(self): pass def validation_step(self, batch: Any, batch_idx: int): loss, preds, targets = self.model_step(batch) # update and log metrics self.val_loss(loss) self.val_acc(preds, targets) self.log("val/loss", self.val_loss, on_step=False, on_epoch=True, prog_bar=True) self.log("val/acc", self.val_acc, on_step=False, on_epoch=True, prog_bar=True) def on_validation_epoch_end(self): acc = self.val_acc.compute() # get current val acc self.val_acc_best(acc) # update best so far val acc # log `val_acc_best` as a value through `.compute()` method, instead of as a metric object # otherwise metric would be reset by lightning after each epoch self.log("val/acc_best", self.val_acc_best.compute(), sync_dist=True, prog_bar=True) def test_step(self, batch: Any, batch_idx: int): loss, preds, targets = self.model_step(batch) # update and log metrics self.test_loss(loss) self.test_acc(preds, targets) self.log("test/loss", self.test_loss, on_step=False, on_epoch=True, prog_bar=True) self.log("test/acc", self.test_acc, on_step=False, on_epoch=True, prog_bar=True) def on_test_epoch_end(self): pass def configure_optimizers(self): """Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Examples: https://lightning.ai/docs/pytorch/latest/common/lightning_module.html#configure-optimizers """ optimizer = self.hparams.optimizer(params=self.parameters()) if self.hparams.scheduler is not None: scheduler = self.hparams.scheduler(optimizer=optimizer) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "monitor": "val/loss", "interval": "epoch", "frequency": 1, }, } return {"optimizer": optimizer} if __name__ == "__main__": _ = MNISTLitModule(None, None, None)