Spaces:
Runtime error
Runtime error
import math | |
import random | |
from typing import Any | |
import torch | |
from lightning import LightningModule | |
import diff_ttsg.utils.monotonic_align as monotonic_align | |
from diff_ttsg import utils | |
from diff_ttsg.models.components.diffusion import Diffusion, Diffusion_Motion | |
from diff_ttsg.models.components.text_encoder import (MuMotionEncoder, | |
TextEncoder) | |
from diff_ttsg.utils.model import (denormalize, duration_loss, | |
fix_len_compatibility, generate_path, | |
sequence_mask) | |
from diff_ttsg.utils.utils import plot_tensor | |
log = utils.get_pylogger(__name__) | |
class Diff_TTSG(LightningModule): | |
def __init__( | |
self, | |
n_vocab, | |
n_spks, | |
spk_emb_dim, | |
n_enc_channels, | |
filter_channels, | |
filter_channels_dp, | |
n_heads, | |
n_enc_layers, | |
enc_kernel, | |
enc_dropout, | |
window_size, | |
n_feats, | |
n_motions, | |
dec_dim, | |
beta_min, | |
beta_max, | |
pe_scale, | |
mu_motion_encoder_params, | |
motion_reduction_factor, | |
motion_decoder_channels, | |
data_statistics, | |
out_size, | |
only_speech=False, | |
encoder_type="default", | |
optimizer=None | |
): | |
super(Diff_TTSG, self).__init__() | |
self.save_hyperparameters(logger=False) | |
self.n_vocab = n_vocab | |
self.n_spks = n_spks | |
self.spk_emb_dim = spk_emb_dim | |
self.n_enc_channels = n_enc_channels | |
self.filter_channels = filter_channels | |
self.filter_channels_dp = filter_channels_dp | |
self.n_heads = n_heads | |
self.n_enc_layers = n_enc_layers | |
self.enc_kernel = enc_kernel | |
self.enc_dropout = enc_dropout | |
self.window_size = window_size | |
self.n_feats = n_feats | |
self.n_motions = n_motions | |
self.dec_dim = dec_dim | |
self.beta_min = beta_min | |
self.beta_max = beta_max | |
self.pe_scale = pe_scale | |
self.generate_motion = not only_speech | |
self.motion_reduction_factor = motion_reduction_factor | |
self.out_size = out_size | |
self.mu_diffusion_channels = motion_decoder_channels | |
if n_spks > 1: | |
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim) | |
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels, | |
filter_channels, filter_channels_dp, n_heads, | |
n_enc_layers, enc_kernel, enc_dropout, window_size, encoder_type=encoder_type) | |
self.decoder = Diffusion(n_feats, dec_dim, n_spks, spk_emb_dim, beta_min, beta_max, pe_scale) | |
if self.generate_motion: | |
self.motion_prior_loss = mu_motion_encoder_params.pop('prior_loss', True) | |
self.mu_motion_encoder = MuMotionEncoder( | |
input_channels=n_feats, | |
output_channels=n_motions, | |
**mu_motion_encoder_params | |
) | |
self.decoder_motion = Diffusion_Motion( | |
in_channels=n_motions, | |
motion_decoder_channels=motion_decoder_channels, | |
beta_min=beta_min, | |
beta_max=beta_max, | |
) | |
self.update_data_statistics(data_statistics) | |
def update_data_statistics(self, data_statistics): | |
if data_statistics is None: | |
data_statistics = { | |
'mel_mean': 0.0, | |
'mel_std': 1.0, | |
'motion_mean': 0.0, | |
'motion_std': 1.0, | |
} | |
self.register_buffer('mel_mean', torch.tensor(data_statistics['mel_mean'])) | |
self.register_buffer('mel_std', torch.tensor(data_statistics['mel_std'])) | |
self.register_buffer('motion_mean', torch.tensor(data_statistics['motion_mean'])) | |
self.register_buffer('motion_std', torch.tensor(data_statistics['motion_std'])) | |
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0): | |
""" | |
Generates mel-spectrogram from text. Returns: | |
1. encoder outputs | |
2. decoder outputs | |
3. generated alignment | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
n_timesteps (int): number of steps to use for reverse diffusion in decoder. | |
temperature (float, optional): controls variance of terminal distribution. | |
stoc (bool, optional): flag that adds stochastic term to the decoder sampler. | |
Usually, does not provide synthesis improvements. | |
length_scale (float, optional): controls speech pace. | |
Increase value to slow down generated speech and vice versa. | |
""" | |
if isinstance(n_timesteps, dict): | |
n_timestep_mel = n_timesteps['mel'] | |
n_timestep_motion = n_timesteps['motion'] | |
else: | |
n_timestep_mel = n_timesteps | |
n_timestep_motion = n_timesteps | |
if isinstance(temperature, dict): | |
temperature_mel = temperature['mel'] | |
temperature_motion = temperature['motion'] | |
else: | |
temperature_mel = temperature | |
temperature_motion = temperature | |
if self.n_spks > 1: | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature_mel | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timestep_mel, stoc, spk) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
if self.generate_motion: | |
mu_y_motion = mu_y[:, :, ::self.motion_reduction_factor] | |
y_motion_mask = y_mask[:, :, ::self.motion_reduction_factor] | |
mu_y_motion = self.mu_motion_encoder(mu_y_motion, y_motion_mask) | |
encoder_outputs_motion = mu_y_motion[:, :, :y_max_length] | |
# sample latent representation from terminal distribution N(mu_y_motion, I) | |
z_motion = mu_y_motion + torch.randn_like(mu_y_motion, device=mu_y_motion.device) / temperature_motion | |
# Generate sample by performing reverse dynamics | |
decoder_outputs_motion = self.decoder_motion(z_motion, y_motion_mask, mu_y_motion, n_timestep_motion, stoc, spk) | |
decoder_outputs_motion = decoder_outputs_motion[:, :, :y_max_length] | |
else: | |
decoder_outputs_motion = None | |
encoder_outputs_motion = None | |
return { | |
'encoder_outputs_mel': encoder_outputs, | |
'decoder_outputs_mel': decoder_outputs, | |
'encoder_outputs_motion': encoder_outputs_motion, | |
'decoder_outputs_motion': decoder_outputs_motion, | |
'attn': attn[:, :, :y_max_length], | |
'mel': denormalize(decoder_outputs, self.mel_mean, self.mel_std), | |
'motion': denormalize(decoder_outputs_motion, self.motion_mean, self.motion_std) if self.generate_motion else None, | |
} | |
def forward(self, x, x_lengths, y, y_lengths, y_motion, spk=None, out_size=None): | |
""" | |
Computes 3 losses: | |
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS). | |
2. prior loss: loss between mel-spectrogram and encoder outputs. | |
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder. | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
y (torch.Tensor): batch of corresponding mel-spectrograms. | |
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch. | |
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained. | |
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size. | |
""" | |
if self.n_spks > 1: | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk) | |
y_max_length = y.shape[-1] | |
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram | |
with torch.no_grad(): | |
const = -0.5 * math.log(2 * math.pi) * self.n_feats | |
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device) | |
y_square = torch.matmul(factor.transpose(1, 2), y ** 2) | |
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y) | |
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1) | |
log_prior = y_square - y_mu_double + mu_square + const | |
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1)) | |
attn = attn.detach() | |
# Compute loss between predicted log-scaled durations and those obtained from MAS | |
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask | |
dur_loss = duration_loss(logw, logw_, x_lengths) | |
# Cut a small segment of mel-spectrogram in order to increase batch size | |
if not isinstance(out_size, type(None)): | |
max_offset = (y_lengths - out_size).clamp(0) # cut a random segment of size `out_size` from each sample in batch max_offset: [758, 160, 773] | |
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy())) # offset ranges for each sample in batch offset_ranges: [(0, 758), (0, 160), (0, 773)] | |
out_offset = torch.LongTensor([ | |
torch.tensor(random.choice(range(start, end)) if end > start else 0) | |
for start, end in offset_ranges | |
]).to(y_lengths) | |
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device) | |
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device) | |
if self.generate_motion: | |
y_motion_cut = torch.zeros(y_motion.shape[0], self.n_motions, out_size, dtype=y_motion.dtype, device=y_motion.device) | |
y_cut_lengths = [] | |
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)): | |
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0) | |
y_cut_lengths.append(y_cut_length) | |
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length | |
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper] | |
if self.generate_motion: | |
y_motion_cut[i, :, :y_cut_length] = y_motion[i, :, cut_lower:cut_upper] | |
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper] | |
y_cut_lengths = torch.LongTensor(y_cut_lengths) | |
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask) | |
attn = attn_cut | |
y = y_cut | |
if self.generate_motion: | |
y_motion = y_motion_cut | |
y_mask = y_cut_mask | |
# Align encoded text with mel-spectrogram and get mu_y segment | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
# Compute loss of score-based decoder | |
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk) | |
if self.generate_motion: | |
# Reduce motion features | |
mu_y_motion = mu_y[:, :, ::self.motion_reduction_factor] | |
y_motion_mask = y_mask[:, :, ::self.motion_reduction_factor] | |
y_motion = y_motion[:, :, ::self.motion_reduction_factor] | |
mu_y_motion = self.mu_motion_encoder(mu_y_motion, y_motion_mask) | |
diff_loss_motion, xt_motion = self.decoder_motion.compute_loss(y_motion, y_motion_mask, mu_y_motion, spk) | |
else: | |
diff_loss_motion = 0 | |
# Compute loss between aligned encoder outputs and mel-spectrogram | |
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask) | |
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats) | |
if self.generate_motion and self.motion_prior_loss: | |
prior_loss_motion = torch.sum(0.5 * ((y_motion - mu_y_motion) ** 2 + math.log(2 * math.pi)) * y_motion_mask) | |
prior_loss_motion = prior_loss_motion / (torch.sum(y_motion_mask) * self.n_motions) | |
else: | |
prior_loss_motion = 0 | |
return dur_loss, prior_loss + prior_loss_motion, diff_loss + diff_loss_motion | |
def configure_optimizers(self) -> Any: | |
optimizer = self.hparams.optimizer(params=self.parameters()) | |
return {'optimizer': optimizer} | |
def get_losses(self, batch): | |
pass | |
x, x_lengths = batch['x'], batch['x_lengths'] | |
y, y_lengths = batch['y'], batch['y_lengths'] | |
y_motion = batch['y_motion'] | |
dur_loss, prior_loss, diff_loss = self(x, x_lengths, y, y_lengths, y_motion, out_size=self.out_size) | |
return { | |
'dur_loss': dur_loss, | |
'prior_loss': prior_loss, | |
'diff_loss': diff_loss, | |
} | |
def training_step(self, batch: Any, batch_idx: int): | |
loss_dict = self.get_losses(batch) | |
self.log('step', float(self.global_step), on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
self.log('sub_loss/train_dur_loss', loss_dict['dur_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
self.log('sub_loss/train_prior_loss', loss_dict['prior_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
self.log('sub_loss/train_diff_loss', loss_dict['diff_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
total_loss = sum(loss_dict.values()) | |
self.log('loss/train', total_loss, on_step=True, on_epoch=True, logger=True, prog_bar=True, sync_dist=True) | |
return {'loss': total_loss, 'log': loss_dict } | |
def validation_step(self, batch: Any, batch_idx: int): | |
loss_dict = self.get_losses(batch) | |
self.log('sub_loss/val_dur_loss', loss_dict['dur_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
self.log('sub_loss/val_prior_loss', loss_dict['prior_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
self.log('sub_loss/val_diff_loss', loss_dict['diff_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True) | |
total_loss = sum(loss_dict.values()) | |
self.log('loss/val', total_loss, on_step=True, on_epoch=True, logger=True, prog_bar=True, sync_dist=True) | |
return total_loss | |
def on_validation_end(self) -> None: | |
if self.trainer.is_global_zero: | |
one_batch = next(iter(self.trainer.val_dataloaders)) | |
if self.current_epoch == 0: | |
log.debug("Plotting original samples") | |
for i in range(4): | |
y = one_batch['y'][i].unsqueeze(0).to(self.device) | |
y_motion = one_batch['y_motion'][i].unsqueeze(0).to(self.device) | |
self.logger.experiment.add_image(f'original/mel_{i}', plot_tensor(y.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |
if self.generate_motion: | |
self.logger.experiment.add_image(f'original/mel_{i}', plot_tensor(y_motion.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |
log.debug(f'Synthesising...') | |
for i in range(4): | |
x = one_batch['x'][i].unsqueeze(0).to(self.device) | |
x_lengths = one_batch['x_lengths'][i].unsqueeze(0).to(self.device) | |
output = self.synthesise(x, x_lengths, n_timesteps=20) | |
y_enc, y_dec = output['encoder_outputs_mel'], output['decoder_outputs_mel'] | |
y_motion_enc, y_motion_dec, attn = output['encoder_outputs_motion'], output['decoder_outputs_motion'], output['attn'] | |
self.logger.experiment.add_image(f'generated_enc/{i}', plot_tensor(y_enc.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |
self.logger.experiment.add_image(f'generated_dec/{i}', plot_tensor(y_dec.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |
if self.generate_motion: | |
self.logger.experiment.add_image(f'generated_enc_motion/{i}', plot_tensor(y_motion_enc.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |
self.logger.experiment.add_image(f'generated_dec_motion/{i}', plot_tensor(y_motion_dec.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |
self.logger.experiment.add_image(f'alignment/{i}', plot_tensor(attn.squeeze().cpu()), self.current_epoch, dataformats='HWC') | |