Spaces:
Running
on
L4
Running
on
L4
File size: 10,511 Bytes
2fbcf51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from __future__ import annotations
import ast
import csv
import inspect
import os
import subprocess
import tempfile
import threading
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Tuple
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL
import PIL.Image
import gradio
from gradio import components, processing_utils, routes, utils
from gradio.context import Context
from gradio.documentation import document, set_documentation_group
from gradio.flagging import CSVLogger
if TYPE_CHECKING: # Only import for type checking (to avoid circular imports).
from gradio.components import IOComponent
CACHED_FOLDER = "gradio_cached_examples"
LOG_FILE = "log.csv"
def create_myexamples(
examples: List[Any] | List[List[Any]] | str,
inputs: IOComponent | List[IOComponent],
outputs: IOComponent | List[IOComponent] | None = None,
fn: Callable | None = None,
cache_examples: bool = False,
examples_per_page: int = 10,
_api_mode: bool = False,
label: str | None = None,
elem_id: str | None = None,
run_on_click: bool = False,
preprocess: bool = True,
postprocess: bool = True,
batch: bool = False,):
"""Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
examples_obj = MyExamples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=fn,
cache_examples=cache_examples,
examples_per_page=examples_per_page,
_api_mode=_api_mode,
label=label,
elem_id=elem_id,
run_on_click=run_on_click,
preprocess=preprocess,
postprocess=postprocess,
batch=batch,
_initiated_directly=False,
)
utils.synchronize_async(examples_obj.create)
return examples_obj
class MyExamples(gradio.helpers.Examples):
def __init__(
self,
examples: List[Any] | List[List[Any]] | str,
inputs: IOComponent | List[IOComponent],
outputs: IOComponent | List[IOComponent] | None = None,
fn: Callable | None = None,
cache_examples: bool = False,
examples_per_page: int = 10,
_api_mode: bool = False,
label: str | None = "Examples",
elem_id: str | None = None,
run_on_click: bool = False,
preprocess: bool = True,
postprocess: bool = True,
batch: bool = False,
_initiated_directly: bool = True,):
if _initiated_directly:
warnings.warn(
"Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
)
if cache_examples and (fn is None or outputs is None):
raise ValueError("If caching examples, `fn` and `outputs` must be provided")
if not isinstance(inputs, list):
inputs = [inputs]
if outputs and not isinstance(outputs, list):
outputs = [outputs]
working_directory = Path().absolute()
if examples is None:
raise ValueError("The parameter `examples` cannot be None")
elif isinstance(examples, list) and (
len(examples) == 0 or isinstance(examples[0], list)
):
pass
elif (
isinstance(examples, list) and len(inputs) == 1
): # If there is only one input component, examples can be provided as a regular list instead of a list of lists
examples = [[e] for e in examples]
elif isinstance(examples, str):
if not Path(examples).exists():
raise FileNotFoundError(
"Could not find examples directory: " + examples
)
working_directory = examples
if not (Path(examples) / LOG_FILE).exists():
if len(inputs) == 1:
examples = [[e] for e in os.listdir(examples)]
else:
raise FileNotFoundError(
"Could not find log file (required for multiple inputs): "
+ LOG_FILE
)
else:
with open(Path(examples) / LOG_FILE) as logs:
examples = list(csv.reader(logs))
examples = [
examples[i][: len(inputs)] for i in range(1, len(examples))
] # remove header and unnecessary columns
else:
raise ValueError(
"The parameter `examples` must either be a string directory or a list"
"(if there is only 1 input component) or (more generally), a nested "
"list, where each sublist represents a set of inputs."
)
input_has_examples = [False] * len(inputs)
for example in examples:
for idx, example_for_input in enumerate(example):
# if not (example_for_input is None):
if True:
try:
input_has_examples[idx] = True
except IndexError:
pass # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)
inputs_with_examples = [
inp for (inp, keep) in zip(inputs, input_has_examples) if keep
]
non_none_examples = [
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
for example in examples
]
self.examples = examples
self.non_none_examples = non_none_examples
self.inputs = inputs
self.inputs_with_examples = inputs_with_examples
self.outputs = outputs
self.fn = fn
self.cache_examples = cache_examples
self._api_mode = _api_mode
self.preprocess = preprocess
self.postprocess = postprocess
self.batch = batch
with utils.set_directory(working_directory):
self.processed_examples = [
[
component.postprocess(sample)
for component, sample in zip(inputs, example)
]
for example in examples
]
self.non_none_processed_examples = [
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
for example in self.processed_examples
]
if cache_examples:
for example in self.examples:
if len([ex for ex in example if ex is not None]) != len(self.inputs):
warnings.warn(
"Examples are being cached but not all input components have "
"example values. This may result in an exception being thrown by "
"your function. If you do get an error while caching examples, make "
"sure all of your inputs have example values for all of your examples "
"or you provide default values for those particular parameters in your function."
)
break
with utils.set_directory(working_directory):
self.dataset = components.Dataset(
components=inputs_with_examples,
samples=non_none_examples,
type="index",
label=label,
samples_per_page=examples_per_page,
elem_id=elem_id,
)
self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id)
self.cached_file = Path(self.cached_folder) / "log.csv"
self.cache_examples = cache_examples
self.run_on_click = run_on_click
from gradio import utils, processing_utils
from PIL import Image as _Image
from pathlib import Path
import numpy as np
def customized_postprocess(self, y):
if y is None:
return None
if isinstance(y, dict):
if self.tool == "sketch" and self.source in ["upload", "webcam"]:
y, mask = y["image"], y["mask"]
if y is None:
return None
elif isinstance(y, np.ndarray):
im = processing_utils.encode_array_to_base64(y)
elif isinstance(y, _Image.Image):
im = processing_utils.encode_pil_to_base64(y)
elif isinstance(y, (str, Path)):
im = processing_utils.encode_url_or_file_to_base64(y)
else:
raise ValueError("Cannot process this value as an Image")
im = self._format_image(im)
if mask is None:
return im
elif isinstance(y, np.ndarray):
mask_im = processing_utils.encode_array_to_base64(mask)
elif isinstance(y, _Image.Image):
mask_im = processing_utils.encode_pil_to_base64(mask)
elif isinstance(y, (str, Path)):
mask_im = processing_utils.encode_url_or_file_to_base64(mask)
else:
raise ValueError("Cannot process this value as an Image")
return {"image": im, "mask" : mask_im,}
elif isinstance(y, np.ndarray):
return processing_utils.encode_array_to_base64(y)
elif isinstance(y, _Image.Image):
return processing_utils.encode_pil_to_base64(y)
elif isinstance(y, (str, Path)):
return processing_utils.encode_url_or_file_to_base64(y)
else:
raise ValueError("Cannot process this value as an Image")
# def customized_as_example(self, input_data=None):
# if input_data is None:
# return str('assets/demo/misc/noimage.jpg')
# elif isinstance(input_data, dict):
# im = np.array(PIL.Image.open(input_data["image"])).astype(float)
# mask = np.array(PIL.Image.open(input_data["mask"])).astype(float)/255
# imm = (im * (1-mask)).astype(np.uint8)
# import time
# ctime = int(time.time()*100)
# impath = 'assets/demo/temp/temp_{}.png'.format(ctime)
# PIL.Image.fromarray(imm).save(impath)
# return str(utils.abspath(impath))
# else:
# return str(utils.abspath(input_data))
def customized_as_example(self, input_data=None):
if input_data is None:
return str('assets/demo/misc/noimage.jpg')
else:
return str(utils.abspath(input_data))
|