jiachenl's picture
update hf demo
05ff3be
raw
history blame
4.98 kB
import torch
from torch import nn
from torch.nn import Parameter
from torch.autograd import Variable
from torch.nn import functional as F
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
"""
Based on https://github.com/heykeetae/Self-Attention-GAN/blob/master/spectral.py
and add _noupdate_u_v() for evaluation
"""
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data))
u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _noupdate_u_v(self):
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
height = w.data.shape[0]
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + "_u", u)
self.module.register_parameter(self.name + "_v", v)
self.module.register_parameter(self.name + "_bar", w_bar)
def forward(self, *args):
# if torch.is_grad_enabled() and self.module.training:
if self.module.training:
self._update_u_v()
else:
self._noupdate_u_v()
return self.module.forward(*args)
class ASPP(nn.Module):
'''
based on https://github.com/chenxi116/DeepLabv3.pytorch/blob/master/deeplab.py
'''
def __init__(self, in_channel, out_channel, conv=nn.Conv2d, norm=nn.BatchNorm2d):
super(ASPP, self).__init__()
mid_channel = 256
dilations = [1, 2, 4, 8]
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.relu = nn.ReLU(inplace=True)
self.aspp1 = conv(in_channel, mid_channel, kernel_size=1, stride=1, dilation=dilations[0], bias=False)
self.aspp2 = conv(in_channel, mid_channel, kernel_size=3, stride=1,
dilation=dilations[1], padding=dilations[1],
bias=False)
self.aspp3 = conv(in_channel, mid_channel, kernel_size=3, stride=1,
dilation=dilations[2], padding=dilations[2],
bias=False)
self.aspp4 = conv(in_channel, mid_channel, kernel_size=3, stride=1,
dilation=dilations[3], padding=dilations[3],
bias=False)
self.aspp5 = conv(in_channel, mid_channel, kernel_size=1, stride=1, bias=False)
self.aspp1_bn = norm(mid_channel)
self.aspp2_bn = norm(mid_channel)
self.aspp3_bn = norm(mid_channel)
self.aspp4_bn = norm(mid_channel)
self.aspp5_bn = norm(mid_channel)
self.conv2 = conv(mid_channel * 5, out_channel, kernel_size=1, stride=1,
bias=False)
self.bn2 = norm(out_channel)
def forward(self, x):
x1 = self.aspp1(x)
x1 = self.aspp1_bn(x1)
x1 = self.relu(x1)
x2 = self.aspp2(x)
x2 = self.aspp2_bn(x2)
x2 = self.relu(x2)
x3 = self.aspp3(x)
x3 = self.aspp3_bn(x3)
x3 = self.relu(x3)
x4 = self.aspp4(x)
x4 = self.aspp4_bn(x4)
x4 = self.relu(x4)
x5 = self.global_pooling(x)
x5 = self.aspp5(x5)
x5 = self.aspp5_bn(x5)
x5 = self.relu(x5)
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode='nearest')(x5)
x = torch.cat((x1, x2, x3, x4, x5), 1)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
return x