File size: 16,066 Bytes
05ff3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d838c
05ff3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faeeb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
05ff3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faeeb7e
 
 
05ff3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3bf2d7
05ff3be
 
 
 
 
 
 
 
 
d3bf2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
05ff3be
 
 
04cd690
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# ------------------------------------------------------------------------
# Modified from Grounded-SAM (https://github.com/IDEA-Research/Grounded-Segment-Anything)
# ------------------------------------------------------------------------
import os
import sys
import random
import warnings

os.system("export BUILD_WITH_CUDA=True")
os.system("python -m pip install -e segment-anything")
os.system("python -m pip install -e GroundingDINO")
os.system("pip install --upgrade diffusers[torch]")
#os.system("pip install opencv-python pycocotools matplotlib")
sys.path.insert(0, './GroundingDINO')
sys.path.insert(0, './segment-anything')
warnings.filterwarnings("ignore")

import cv2
from scipy import ndimage

import gradio as gr
import argparse

import numpy as np
import torch
from torch.nn import functional as F
import torchvision
import networks
import utils

# Grounding DINO
from groundingdino.util.inference import Model

# SAM
from segment_anything.utils.transforms import ResizeLongestSide

# SD
from diffusers import StableDiffusionPipeline

transform = ResizeLongestSide(1024)
# Green Screen
PALETTE_back = (51, 255, 146)

GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "checkpoints/groundingdino_swint_ogc.pth"
mam_checkpoint="checkpoints/mam_sam_vitb.pth"
output_dir="outputs"
device = 'cuda'
background_list = os.listdir('assets/backgrounds')

# initialize MAM
mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep')
mam_model.to(device)
checkpoint = torch.load(mam_checkpoint, map_location=device)
mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
mam_model = mam_model.eval()

# initialize GroundingDINO
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device)

# initialize StableDiffusionPipeline
generator = StableDiffusionPipeline.from_pretrained("checkpoints/stable-diffusion-v1-5", torch_dtype=torch.float16)
generator.to(device)

def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode):

    # make dir
    os.makedirs(output_dir, exist_ok=True)

    # load image
    image_ori = input_image["image"]
    scribble = input_image["mask"]
    original_size = image_ori.shape[:2]

    if task_type == 'text':
        if text_prompt is None:
            print('Please input non-empty text prompt')
        with torch.no_grad():
            detections, phrases = grounding_dino_model.predict_with_caption(
                image=cv2.cvtColor(image_ori, cv2.COLOR_RGB2BGR),
                caption=text_prompt,
                box_threshold=box_threshold,
                text_threshold=text_threshold
            )

        if len(detections.xyxy) > 1:
            nms_idx = torchvision.ops.nms(
                torch.from_numpy(detections.xyxy), 
                torch.from_numpy(detections.confidence), 
                iou_threshold,
            ).numpy().tolist()

            detections.xyxy = detections.xyxy[nms_idx]
            detections.confidence = detections.confidence[nms_idx]
    
        bbox = detections.xyxy[np.argmax(detections.confidence)]
        bbox = transform.apply_boxes(bbox, original_size)
        bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)

    image = transform.apply_image(image_ori)
    image = torch.as_tensor(image).to(device)
    image = image.permute(2, 0, 1).contiguous()

    pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).to(device)
    pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).to(device)

    image = (image - pixel_mean) / pixel_std

    h, w = image.shape[-2:]
    pad_size = image.shape[-2:]
    padh = 1024 - h
    padw = 1024 - w
    image = F.pad(image, (0, padw, 0, padh))

    if task_type == 'scribble_point':
        scribble = scribble.transpose(2, 1, 0)[0]
        labeled_array, num_features = ndimage.label(scribble >= 255)
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)
        ### (x,y)
        centers = transform.apply_coords(centers, original_size)
        point_coords = torch.from_numpy(centers).to(device)
        point_coords = point_coords.unsqueeze(0).to(device)
        point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
        if scribble_mode == 'split':
            point_coords = point_coords.permute(1, 0, 2)
            point_labels = point_labels.permute(1, 0)
            
        sample = {'image': image.unsqueeze(0), 'point': point_coords, 'label': point_labels, 'ori_shape': original_size, 'pad_shape': pad_size}
    elif task_type == 'scribble_box':
        scribble = scribble.transpose(2, 1, 0)[0]
        labeled_array, num_features = ndimage.label(scribble >= 255)
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)
        ### (x1, y1, x2, y2)
        x_min = centers[:, 0].min()
        x_max = centers[:, 0].max()
        y_min = centers[:, 1].min()
        y_max = centers[:, 1].max()
        bbox = np.array([x_min, y_min, x_max, y_max])
        bbox = transform.apply_boxes(bbox, original_size)
        bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)

        sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
    elif task_type == 'text':
        sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
    else:
        print("task_type:{} error!".format(task_type))

    with torch.no_grad():
        feas, pred, post_mask = mam_model.forward_inference(sample)

        alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8']
        alpha_pred_os8 = alpha_pred_os8[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
        alpha_pred_os4 = alpha_pred_os4[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
        alpha_pred_os1 = alpha_pred_os1[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]

        alpha_pred_os8 = F.interpolate(alpha_pred_os8, sample['ori_shape'], mode="bilinear", align_corners=False)
        alpha_pred_os4 = F.interpolate(alpha_pred_os4, sample['ori_shape'], mode="bilinear", align_corners=False)
        alpha_pred_os1 = F.interpolate(alpha_pred_os1, sample['ori_shape'], mode="bilinear", align_corners=False)
        
        if guidance_mode == 'mask':
            weight_os8 = utils.get_unknown_tensor_from_mask_oneside(post_mask, rand_width=10, train_mode=False)
            post_mask[weight_os8>0] = alpha_pred_os8[weight_os8>0]
            alpha_pred = post_mask.clone().detach()
        else:
            weight_os8 = utils.get_unknown_box_from_mask(post_mask)
            alpha_pred_os8[weight_os8>0] = post_mask[weight_os8>0]
            alpha_pred = alpha_pred_os8.clone().detach()


        weight_os4 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=20, train_mode=False)
        alpha_pred[weight_os4>0] = alpha_pred_os4[weight_os4>0]
        
        weight_os1 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=10, train_mode=False)
        alpha_pred[weight_os1>0] = alpha_pred_os1[weight_os1>0]
       
        alpha_pred = alpha_pred[0][0].cpu().numpy()

    #### draw
    ### alpha matte
    alpha_rgb = cv2.cvtColor(np.uint8(alpha_pred*255), cv2.COLOR_GRAY2RGB)
    ### com img with background
    if background_type == 'real_world_sample':
        background_img_file = os.path.join('assets/backgrounds', random.choice(background_list))
        background_img = cv2.imread(background_img_file)
        background_img = cv2.cvtColor(background_img, cv2.COLOR_BGR2RGB)
        background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
        com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
        com_img = np.uint8(com_img)
    else:
        if background_prompt is None:
            print('Please input non-empty background prompt')
        else:
            background_img = generator(background_prompt).images[0]
            background_img = np.array(background_img)
            background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
            com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
            com_img = np.uint8(com_img)
    ### com img with green screen
    green_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.array([PALETTE_back], dtype='uint8')
    green_img = np.uint8(green_img)
    return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')]

if __name__ == "__main__":
    parser = argparse.ArgumentParser("MAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument('--port', type=int, default=7589, help='port to run the server')
    parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
    args = parser.parse_args()

    print(args)

    block = gr.Blocks()
    if not args.no_gradio_queue:
        block = block.queue()

    with block:
        gr.Markdown(
        """
        # Matting Anything

        [Jiachen Li](https://chrisjuniorli.github.io/),
        [Jitesh Jain](https://praeclarumjj3.github.io/),
        [Humphrey Shi](https://www.humphreyshi.com/home)

        [[`Project page`](https://chrisjuniorli.github.io/project/Matting-Anything/)]
        [[`ArXiv`](https://arxiv.org/abs/2306.05399)]
        [[`Code`](https://github.com/SHI-Labs/Matting-Anything)]
        [[`Video`](https://www.youtube.com/watch?v=XY2Q0HATGOk)]

        Welcome to the Matting Anything demo and upload your image to get started <br/> 
        You may select different prompt types to get the alpha matte of target instance, and select different backgrounds for image composition. The local setup instructions of the demo is available at: https://github.com/SHI-Labs/Matting-Anything

        ## Usage
        You may check the <a href='https://www.youtube.com/watch?v=XY2Q0HATGOk'>video</a> to see how to play with the demo, or check the details below.
        <details>
        You may upload an image to start, we support 3 prompt types to get the alpha matte of the target instance:

        **scribble_point**: Click an point on the target instance.

        **scribble_box**: Click on two points, the top-left point and the bottom-right point to represent a bounding box of the target instance.

        **text**: Send text prompt to identify the target instance in the `Text prompt` box.

        We also support 2 background types to support image composition with the alpha matte output:

        **real_world_sample**: Randomly select a real-world image from `assets/backgrounds` for composition.

        **generated_by_text**: Send background text prompt to create a background image with stable diffusion model in the `Background prompt` box.

        **guidance_mode**: Try mask guidance if alpha guidacne didn't return satisfying outputs

        </details>
        """)
   
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy", value="assets/demo.jpg", tool="sketch")
                task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type")
                text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle")
                background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type")
                background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York")
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
                    )
                    iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
                    )
                    scribble_mode = gr.Dropdown(
                        ["merge", "split"], value="split", label="scribble_mode"
                    )
                    guidance_mode = gr.Dropdown(
                        ["mask", "alpha"], value="alpha", label="guidance_mode", info="mask guidance works better on complex scenes with multiple instances, alpha guidance works better on simple scene with human instances"
                    )

            with gr.Column():
                gallery = gr.Gallery(
                    label="Generated images", show_label=True, elem_id="gallery"
                ).style(preview=True, grid=3, object_fit="scale-down")

        run_button.click(fn=run_grounded_sam, inputs=[
                        input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode], outputs=gallery)
        
        gr.Markdown(
        """
        ## Examples
        
        | input image | text prompt  | background type | background prompt | guidance mode | composite with background | green screen | 
        |-------------|------------|--------------|--------------|--------------|--------------|--------------|
        | <img src="file=assets/examples/demo.jpg" width="100" height="100"> | the girl in the middle | real-world sample | None | alpha |   <img src="file=assets/examples/demo_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/demo_green.jpg" width="100" height="100"> |
        | <img src="file=assets/examples/img1.jpg" width="100" height="100"> | the girl in the middle | generated by text | downtown area in chicago | alpha |   <img src="file=assets/examples/img1_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/img1_green.jpg" width="100" height="100"> |
        | <img src="file=assets/examples/img2.jpeg" width="100" height="100"> | the dog sitting the left side | generated by text | national park view | mask |   <img src="file=assets/examples/img2_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/img2_green.jpg" width="100" height="100"> |
        | <img src="file=assets/examples/img2.jpeg" width="100" height="100"> | the bigger dog sitting the right side | real-world sample | None | mask |   <img src="file=assets/examples/img2_bg_2.jpg" width="100" height="100"> | <img src="file=assets/examples/img2_green_2.jpg" width="100" height="100"> |
        | <img src="file=assets/examples/img3.jpg" width="100" height="100"> | the girl with red sweater | real-world sample | None | alpha |   <img src="file=assets/examples/img3_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/img3_green.jpg" width="100" height="100"> |
        | <img src="file=assets/examples/img3.jpg" width="100" height="100"> | the girl with black sweater | generated by text | sunrise on the sea | alpha |   <img src="file=assets/examples/img3_bg_2.jpg" width="100" height="100"> | <img src="file=assets/examples/img3_green_2.jpg" width="100" height="100"> |
        """)

    block.launch(debug=args.debug, share=args.share, show_error=True)
    #block.queue(concurrency_count=100)
    #block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)