import numpy as np import torch from torch_utils import training_stats from torch_utils import misc from torch_utils.ops import conv2d_gradfix from icecream import ic from .high_receptive_pl import HRFPL import os #---------------------------------------------------------------------------- class Loss: def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain): # to be overridden by subclass raise NotImplementedError() #---------------------------------------------------------------------------- class StyleGAN2Loss(Loss): def __init__(self, device, G_encoder, G_mapping, G_synthesis, D, augment_pipe=None, style_mixing_prob=0.9, r1_gamma=10, pl_batch_shrink=2, pl_decay=0.01, pl_weight=2): super().__init__() self.device = device self.G_encoder = G_encoder self.G_mapping = G_mapping self.G_synthesis = G_synthesis self.D = D self.augment_pipe = augment_pipe self.style_mixing_prob = style_mixing_prob self.r1_gamma = r1_gamma self.pl_batch_shrink = pl_batch_shrink self.pl_decay = pl_decay self.pl_weight = pl_weight self.pl_mean = torch.zeros([], device=device) self.run_hrfpl = HRFPL(weight=5, weights_path=os.getcwd()) def run_G(self, r_img, c, sync): with misc.ddp_sync(self.G_encoder, sync): x_global, z, feats = self.G_encoder(r_img, c) with misc.ddp_sync(self.G_mapping, sync): ws = self.G_mapping(z, c) if self.style_mixing_prob > 0: with torch.autograd.profiler.record_function('style_mixing'): cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1]) cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1])) ws[:, cutoff:] = self.G_mapping(torch.randn_like(z), c, skip_w_avg_update=True)[:, cutoff:] with misc.ddp_sync(self.G_synthesis, sync): img = self.G_synthesis(x_global, feats, ws) return img, ws def run_D(self, img, c, sync): with misc.ddp_sync(self.D, sync): logits = self.D(img, c) return logits def accumulate_gradients(self, phase, erased_img, real_img, mask, real_c, gen_c, sync, gain): assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth'] do_Gmain = (phase in ['Gmain', 'Gboth']) do_Dmain = (phase in ['Dmain', 'Dboth']) do_Dr1 = (phase in ['Dreg', 'Dboth']) and (self.r1_gamma != 0) # Gmain: Maximize logits for generated images. if do_Gmain: with torch.autograd.profiler.record_function('Gmain_forward'): g_inputs = torch.cat([0.5 - mask, erased_img], dim=1) gen_img, _ = self.run_G(g_inputs, gen_c, sync=sync) # May get synced by Gpl. gen_img = gen_img * mask + real_img * (1 - mask) loss_rec = 10 * torch.nn.functional.l1_loss(gen_img, real_img) loss_pl = self.run_hrfpl(gen_img, real_img) if self.augment_pipe is not None: gen_img = self.augment_pipe(gen_img) d_inputs = torch.cat([0.5 - mask, gen_img], dim=1) gen_logits = self.run_D(d_inputs, gen_c, sync=False) loss_G = torch.nn.functional.softplus(-gen_logits) # -log(sigmoid(gen_logits)) loss_Gmain = loss_G.mean() + loss_rec + loss_pl training_stats.report('Loss/G/loss', loss_G) training_stats.report('Loss/G/rec_loss', loss_rec) training_stats.report('Loss/G/main_loss', loss_Gmain) training_stats.report('Loss/G/pl_loss', loss_pl) with torch.autograd.profiler.record_function('Gmain_backward'): loss_Gmain.mul(gain).backward() # Dmain: Minimize logits for generated images. loss_Dgen = 0 if do_Dmain: with torch.autograd.profiler.record_function('Dgen_forward'): g_inputs = torch.cat([0.5 - mask, erased_img], dim=1) gen_img, _ = self.run_G(g_inputs, gen_c, sync=sync) # May get synced by Gpl. gen_img = gen_img * mask + real_img * (1 - mask) if self.augment_pipe is not None: gen_img = self.augment_pipe(gen_img) d_inputs = torch.cat([0.5 - mask, gen_img], dim=1) gen_logits = self.run_D(d_inputs, gen_c, sync=False) # Gets synced by loss_Dreal. loss_Dgen = torch.nn.functional.softplus(gen_logits) # -log(1 - sigmoid(gen_logits)) with torch.autograd.profiler.record_function('Dgen_backward'): loss_Dgen.mean().mul(gain).backward() # Dmain: Maximize logits for real images. # Dr1: Apply R1 regularization. if do_Dmain or do_Dr1: name = 'Dreal_Dr1' if do_Dmain and do_Dr1 else 'Dreal' if do_Dmain else 'Dr1' with torch.autograd.profiler.record_function(name + '_forward'): real_img_tmp = real_img.detach().requires_grad_(do_Dr1) if self.augment_pipe is not None: real_img_tmp = self.augment_pipe(real_img_tmp) d_inputs = torch.cat([0.5 - mask, real_img_tmp], dim=1) real_logits = self.run_D(d_inputs, real_c, sync=sync) loss_Dreal = 0 if do_Dmain: loss_Dreal = torch.nn.functional.softplus(-real_logits) # -log(sigmoid(real_logits)) training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal) loss_Dr1 = 0 if do_Dr1: with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients(): r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp], create_graph=True, only_inputs=True)[0] r1_penalty = r1_grads.square().sum([1,2,3]) loss_Dr1 = r1_penalty * (self.r1_gamma / 2) training_stats.report('Loss/r1_penalty', r1_penalty) training_stats.report('Loss/D/reg', loss_Dr1) with torch.autograd.profiler.record_function(name + '_backward'): (real_logits * 0 + loss_Dreal + loss_Dr1).mean().mul(gain).backward() #----------------------------------------------------------------------------