import streamlit as st
import pandas as pd
from PIL import Image
# Set up page config
st.set_page_config(
page_title="FactBench Leaderboard",
# layout="wide", # Layout remains wide, but content will be centered
)
# Load the image
image = Image.open("factEvalSteps.png")
# Custom CSS for the page
st.markdown(
"""
""",
unsafe_allow_html=True
)
# Display title and description
st.markdown('
', unsafe_allow_html=True)
st.markdown('
FactBench
',
unsafe_allow_html=True)
st.markdown('
Benchmark for LM Factuality Evaluation
',
unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
# Load the data
data_path = "factbench_data.csv"
df = pd.read_csv(data_path)
# Create tabs
tab1, tab2, tab3 = st.tabs(
["Leaderboard", "Benchmark Details", "Submit your models"])
# Tab 1: Leaderboard
with tab1:
st.markdown('', unsafe_allow_html=True)
# Dropdown menu to filter tiers
tiers = ['All Tiers', 'Tier 1: Easy', 'Tier 2: Moderate', 'Tier 3: Hard']
selected_tier = st.selectbox('Select Tier:', tiers)
# Filter the data based on the selected tier
if selected_tier != 'All Tiers':
filtered_df = df[df['Tier'] == selected_tier]
else:
filtered_df = df
# Create HTML for the table
html = '''
Tier |
Model |
FactScore |
SAFE |
Factcheck-GPT |
VERIFY |
'''
# Generate the rows of the table
current_tier = None
for i, row in filtered_df.iterrows():
if row['Tier'] != current_tier:
if current_tier is not None:
# Close the previous tier row
html += ' '
current_tier = row['Tier']
html += f' {current_tier} | '
else:
html += '
'
# Fill in model and scores
html += f'''
{row['Model']} |
{row['FactScore']:.2f} |
{row['SAFE']:.2f} |
{row['Factcheck-GPT']:.2f} |
{row['VERIFY']:.2f} |
'''
# Close the last row and table tags
html += '''
'''
# Display the table
st.markdown(html, unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
# Tab 2: Details
with tab2:
st.markdown('', unsafe_allow_html=True)
st.markdown('
Benchmark Details
',
unsafe_allow_html=True)
st.image(image, use_column_width=True)
st.markdown('### VERIFY: A Pipeline for Factuality Evaluation')
st.write(
"Language models (LMs) are widely used by an increasing number of users, "
"underscoring the challenge of maintaining factual accuracy across a broad range of topics. "
"We present VERIFY (Verification and Evidence Retrieval for Factuality evaluation), "
"a pipeline to evaluate LMs' factual accuracy in real-world user interactions."
)
st.markdown('### Content Categorization')
st.write(
"VERIFY considers the verifiability of LM-generated content and categorizes content units as "
"`supported`, `unsupported`, or `undecidable` based on the retrieved web evidence. "
"Importantly, VERIFY's factuality judgments correlate better with human evaluations than existing methods."
)
st.markdown('### Hallucination Prompts & FactBench Dataset')
st.write(
"Using VERIFY, we identify 'hallucination prompts' across diverse topics—those eliciting the highest rates of "
"incorrect or unverifiable LM responses. These prompts form FactBench, a dataset of 985 prompts across 213 "
"fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and is "
"regularly updated with new prompts."
)
st.markdown('
', unsafe_allow_html=True)
# Tab 3: Links
with tab3:
st.markdown('', unsafe_allow_html=True)
st.markdown('
Submit your model information on our Github
',
unsafe_allow_html=True)
st.markdown(
'[Test your model locally!](https://github.com/FarimaFatahi/FactEval)')
st.markdown(
'[Submit results or issues!](https://github.com/FarimaFatahi/FactEval/issues/new)')
st.markdown('
', unsafe_allow_html=True)