Spaces:
Sleeping
Sleeping
from typing import Dict | |
from llama_index.core import StorageContext , VectorStoreIndex | |
from llama_index.core.base.base_retriever import BaseRetriever | |
from llama_index.core.schema import TextNode , NodeRelationship | |
from llama_index.embeddings.huggingface_api import HuggingFaceInferenceAPIEmbedding | |
from chromadb import EphemeralClient | |
from llama_index.vector_stores.chroma import ChromaVectorStore | |
from requests import get as reqget | |
from nest_asyncio import apply | |
from os import environ | |
from pickle import load as pickle_load | |
from bs4 import BeautifulSoup | |
import flask | |
class AIBook: | |
embed_model:HuggingFaceInferenceAPIEmbedding | |
index:VectorStoreIndex | |
retriever:BaseRetriever | |
def __init__(self,token=environ["hf_api"],srcnum=2): | |
self.embed_model = HuggingFaceInferenceAPIEmbedding(model_name="BAAI/bge-large-en-v1.5",token=token) | |
self.index = VectorStoreIndex(nodes=pickle_load(open('allbook.book', 'rb')),embed_model=self.embed_model,storage_context=StorageContext.from_defaults(vector_store=ChromaVectorStore(chroma_collection= EphemeralClient().get_or_create_collection("jainbook")))) | |
self.retriever = self.index.as_retriever(similarity_top_k=srcnum,vector_store_query_mode="default") | |
def changeToken(self,token:str): | |
if self.embed_model.token != token: | |
self.embed_model = HuggingFaceInferenceAPIEmbedding(model_name="BAAI/bge-large-en-v1.5",token=token) | |
def changesrcnum(self,srcnum:int): | |
self.retriever = self.index.as_retriever(similarity_top_k=srcnum,vector_store_query_mode="default") | |
def retrieve(self,query:str): | |
return self.retriever.retrieve(query) | |
def nodes_to_guj(cls,nodes:list[TextNode])->list[str]: | |
return [node.node.relationships[NodeRelationship("1")].metadata["maintext"] for node in nodes] | |
def nodes_to_eng(cls,nodes:list[TextNode])->list[str]: | |
return [node.node.text for node in nodes] | |
def nodes_to_page_with_bookname(cls,nodes:list[TextNode])->list[Dict]: | |
return [{"page":int(node.node.relationships[NodeRelationship("1")].metadata["page"]),"bookname":node.node.relationships[NodeRelationship("1")].metadata["book"]} for node in nodes] | |
def translate_to_eng(cls,text:str)->str: | |
return "".join([i[0] for i in reqget(f"https://translate.googleapis.com/translate_a/single?client=gtx&sl=gu&tl=en&dt=t&q={text}").json()[0]]) | |
apply() | |
app = flask.Flask(__name__) | |
book = AIBook() | |
def function(): | |
question = flask.request.args.get("question") | |
if question is None: | |
return """Please provide a question as 'https://shethjenil-apiofbookai.hf.space?question=પ્રભુ છે કે નહિ'<br>for getting image of question https://shethjenil-apiofbookai.hf.space/question_to_img?question=પ્રભુ છે કે નહિ<br>for get image by book and page https://shethjenil-apiofbookai.hf.space/getbookimage/023657/99<br>for knowing full data with page etc https://shethjenil-apiofbookai.hf.space/fulldetails?question=પ્રભુ છે કે નહિ<br>Change Token as https://shethjenil-apiofbookai.hf.space/changeToken?token=hf_<b>rgPNhjnXpLSodIphwjmRvPbvrovNYnQavj</b><br>Change srcnum as https://shethjenil-apiofbookai.hf.space/changesrcnum?srcnum=2<br><br><form action="/insert_node" method="post" enctype="multipart/form-data"><input type="file" name="file" accept=".book"><input type="submit" value="Upload Book File"></form>""" | |
if question == "": | |
return "" | |
return "\n\n".join(AIBook.nodes_to_guj(book.retrieve(AIBook.translate_to_eng(question)))) | |
def function2(): | |
book.changeToken(flask.request.args.get("token")) | |
return "Token changed" | |
def function3(): | |
book.changesrcnum(int(flask.request.args.get("srcnum"))) | |
return "srcnum changed" | |
def function4(): | |
if 'file' not in flask.request.files: | |
return "Error" | |
file = flask.request.files['file'] | |
if file.filename.endswith(".book"): | |
book.index.insert(pickle_load(file)) | |
return "inserted" + file.filename | |
else: | |
return "not inserted because file is not a book" | |
def function5(): | |
question = flask.request.args.get("question") | |
if question: | |
return flask.jsonify([{"text":i.get_text(),"score":i.get_score(),"metadata":i.node.relationships[NodeRelationship("1")].metadata} for i in book.retrieve(AIBook.translate_to_eng(question))]) | |
else: | |
return "please provide a question parameter https://shethjenil-apiofbookai.hf.space/fulldetails?question=પ્રભુ છે કે નહિ" | |
def function6(bookid,page): | |
# response = reqget(BeautifulSoup(reqget(f"https://jainqq.org/explore/{bookid}/{page}").content, "html.parser").find("img",class_="img-fluid").get("src")) | |
# return flask.send_file(BytesIO(response.content), mimetype=response.headers['Content-Type']) | |
return flask.redirect(BeautifulSoup(reqget(f"https://jainqq.org/explore/{bookid}/{page}").content, "html.parser").find("img",class_="img-fluid").get("src")) | |
def function7(): | |
question = flask.request.args.get("question") | |
if question: | |
meta = book.retrieve(AIBook.translate_to_eng(question))[0].node.relationships[NodeRelationship("1")].metadata | |
return flask.redirect(BeautifulSoup(reqget(f"https://jainqq.org/explore/{meta['bookid']}/{meta['page']}").content, "html.parser").find("img",class_="img-fluid").get("src")) | |
if __name__ == '__main__': | |
app.run("0.0.0.0",7860) |