Update app.py
Browse files
app.py
CHANGED
@@ -81,47 +81,76 @@ def upload_to_s3(file_name, bucket, object_name=None):
|
|
81 |
except NoCredentialsError:
|
82 |
return False
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
@spaces.GPU
|
85 |
-
def run_showui(image, query, session_id):
|
86 |
-
"""Main function for inference."""
|
87 |
image_path = array_to_image_path(image, session_id)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
generated_ids_trimmed
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def save_and_upload_data(image_path, query, session_id, is_example_image, votes=None):
|
127 |
"""Save the data to a JSON file and upload to S3."""
|
@@ -221,6 +250,10 @@ def build_demo(embed_mode, concurrency_count=1):
|
|
221 |
|
222 |
Then upload/paste from clipboard 🤗
|
223 |
""")
|
|
|
|
|
|
|
|
|
224 |
textbox = gr.Textbox(
|
225 |
show_label=True,
|
226 |
placeholder="Enter a query (e.g., 'Click Nahant')",
|
@@ -258,13 +291,9 @@ def build_demo(embed_mode, concurrency_count=1):
|
|
258 |
)
|
259 |
|
260 |
with gr.Column(scale=8):
|
261 |
-
|
262 |
-
gr.
|
263 |
-
|
264 |
-
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
|
265 |
-
"""
|
266 |
-
)
|
267 |
-
output_coords = gr.Textbox(label="Clickable Coordinates")
|
268 |
|
269 |
gr.HTML(
|
270 |
"""
|
@@ -276,28 +305,28 @@ def build_demo(embed_mode, concurrency_count=1):
|
|
276 |
downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
|
277 |
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
|
278 |
|
279 |
-
def on_submit(image, query, is_example_image):
|
280 |
if image is None:
|
281 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
282 |
|
283 |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
284 |
|
285 |
-
|
286 |
|
287 |
-
save_and_upload_data(
|
288 |
|
289 |
-
return
|
290 |
|
291 |
submit_btn.click(
|
292 |
on_submit,
|
293 |
-
[imagebox, textbox, is_example_dropdown],
|
294 |
-
[
|
295 |
)
|
296 |
|
297 |
clear_btn.click(
|
298 |
-
lambda: (None, None, None, None
|
299 |
inputs=None,
|
300 |
-
outputs=[imagebox, textbox,
|
301 |
queue=False
|
302 |
)
|
303 |
|
@@ -324,4 +353,4 @@ if __name__ == "__main__":
|
|
324 |
server_port=7860,
|
325 |
ssr_mode=False,
|
326 |
debug=True,
|
327 |
-
)
|
|
|
81 |
except NoCredentialsError:
|
82 |
return False
|
83 |
|
84 |
+
def crop_image(image_path, click_xy, crop_factor=0.5):
|
85 |
+
"""Crop the image around the click point."""
|
86 |
+
image = Image.open(image_path)
|
87 |
+
width, height = image.size
|
88 |
+
crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)
|
89 |
+
|
90 |
+
center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height)
|
91 |
+
left = max(center_x - crop_width // 2, 0)
|
92 |
+
upper = max(center_y - crop_height // 2, 0)
|
93 |
+
right = min(center_x + crop_width // 2, width)
|
94 |
+
lower = min(center_y + crop_height // 2, height)
|
95 |
+
|
96 |
+
cropped_image = image.crop((left, upper, right, lower))
|
97 |
+
cropped_image_path = f"cropped_{os.path.basename(image_path)}"
|
98 |
+
cropped_image.save(cropped_image_path)
|
99 |
+
|
100 |
+
return cropped_image_path
|
101 |
+
|
102 |
@spaces.GPU
|
103 |
+
def run_showui(image, query, session_id, iterations=2):
|
104 |
+
"""Main function for iterative inference."""
|
105 |
image_path = array_to_image_path(image, session_id)
|
106 |
|
107 |
+
click_xy = None
|
108 |
+
images_during_iterations = [] # List to store images at each step
|
109 |
+
|
110 |
+
for _ in range(iterations):
|
111 |
+
messages = [
|
112 |
+
{
|
113 |
+
"role": "user",
|
114 |
+
"content": [
|
115 |
+
{"type": "text", "text": _SYSTEM},
|
116 |
+
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
|
117 |
+
{"type": "text", "text": query}
|
118 |
+
],
|
119 |
+
}
|
120 |
+
]
|
121 |
+
|
122 |
+
global model
|
123 |
+
model = model.to("cuda")
|
124 |
+
|
125 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
126 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
127 |
+
inputs = processor(
|
128 |
+
text=[text],
|
129 |
+
images=image_inputs,
|
130 |
+
videos=video_inputs,
|
131 |
+
padding=True,
|
132 |
+
return_tensors="pt"
|
133 |
+
)
|
134 |
+
inputs = inputs.to("cuda")
|
135 |
+
|
136 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
137 |
+
generated_ids_trimmed = [
|
138 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
139 |
+
]
|
140 |
+
output_text = processor.batch_decode(
|
141 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
142 |
+
)[0]
|
143 |
+
|
144 |
+
click_xy = ast.literal_eval(output_text)
|
145 |
+
|
146 |
+
# Draw point on the current image
|
147 |
+
result_image = draw_point(image_path, click_xy, radius=10)
|
148 |
+
images_during_iterations.append(result_image) # Store the current image
|
149 |
+
|
150 |
+
# Crop the image for the next iteration
|
151 |
+
image_path = crop_image(image_path, click_xy)
|
152 |
+
|
153 |
+
return images_during_iterations, str(click_xy)
|
154 |
|
155 |
def save_and_upload_data(image_path, query, session_id, is_example_image, votes=None):
|
156 |
"""Save the data to a JSON file and upload to S3."""
|
|
|
250 |
|
251 |
Then upload/paste from clipboard 🤗
|
252 |
""")
|
253 |
+
|
254 |
+
# Add a slider for iteration count
|
255 |
+
iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")
|
256 |
+
|
257 |
textbox = gr.Textbox(
|
258 |
show_label=True,
|
259 |
placeholder="Enter a query (e.g., 'Click Nahant')",
|
|
|
291 |
)
|
292 |
|
293 |
with gr.Column(scale=8):
|
294 |
+
# output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain")
|
295 |
+
output_gallery = gr.Gallery(label="Iterative Refinement")
|
296 |
+
output_coords = gr.Textbox(label="Final Clickable Coordinates")
|
|
|
|
|
|
|
|
|
297 |
|
298 |
gr.HTML(
|
299 |
"""
|
|
|
305 |
downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
|
306 |
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
|
307 |
|
308 |
+
def on_submit(image, query, iterations, is_example_image):
|
309 |
if image is None:
|
310 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
311 |
|
312 |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
313 |
|
314 |
+
images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
|
315 |
|
316 |
+
save_and_upload_data(images_during_iterations[-1], query, session_id, is_example_image)
|
317 |
|
318 |
+
return images_during_iterations, click_coords, session_id
|
319 |
|
320 |
submit_btn.click(
|
321 |
on_submit,
|
322 |
+
[imagebox, textbox, iteration_slider, is_example_dropdown],
|
323 |
+
[output_gallery, output_coords, state_session_id],
|
324 |
)
|
325 |
|
326 |
clear_btn.click(
|
327 |
+
lambda: (None, None, None, None),
|
328 |
inputs=None,
|
329 |
+
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
|
330 |
queue=False
|
331 |
)
|
332 |
|
|
|
353 |
server_port=7860,
|
354 |
ssr_mode=False,
|
355 |
debug=True,
|
356 |
+
)
|