File size: 6,524 Bytes
f7111bf
 
 
 
76079d1
 
 
 
 
f7111bf
 
f8fcffd
 
f7111bf
1c2de4d
f7111bf
1c2de4d
f7111bf
 
76079d1
 
 
 
f7111bf
76079d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c9155
 
 
 
76079d1
b8c9155
f7111bf
76079d1
 
 
 
 
 
 
 
f7111bf
76079d1
 
 
 
 
 
 
b3bb8b2
 
 
b8c9155
 
76079d1
 
 
 
 
 
 
 
 
 
 
b8c9155
 
 
 
 
76079d1
 
 
 
 
 
 
 
 
 
 
b3bb8b2
b8c9155
 
 
76079d1
 
 
 
f8fcffd
 
 
b3bb8b2
b8c9155
 
 
 
 
b3bb8b2
 
1c2de4d
 
76079d1
b3bb8b2
 
1c2de4d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from matplotlib import pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
from utils import getSquareYVectorised, getCircle, getBatman, transform, plotGridLines, discriminant

minv = -5.0
maxv = 5.0
step = 0.1

np.set_printoptions(precision=3)
xlim = (-10,10)
ylim = (-10,10)

st.title("Visualizing Eigenvectors with 2x2 Linear Transformations")
st.write(
    "This app shows the effect of a 2x2 linear transformation on simple shapes to understand the role of eigenvectors and eigenvalues in quantifying the nature of a transformation.")

with st.sidebar:
    data = st.selectbox('Select type of dataset', ['Square', 'Circle', 'Batman'])
    if data == 'Batman':
        black = st.checkbox(label='Black')
    transform_type = st.selectbox('Select type of transformation', ['Custom', 'Stretch', 'Shear', 'Rotate'])
    st.write("---")
    if transform_type == 'Custom':
        st.markdown("Select elements of transformation matrix $A$")
        a_00 = st.slider(label = '$a_{00}$', min_value = minv, max_value=maxv, value=1.0, step=step)
        a_01 = st.slider(label = '$a_{01}$', min_value = minv, max_value=maxv, value=0.0, step=step)
        a_10 = st.slider(label = '$a_{10}$', min_value = minv, max_value=maxv, value=0.0, step=step)
        a_11 = st.slider(label = '$a_{11}$', min_value = minv, max_value=maxv, value=1.0, step=step)
        t = np.array([[a_00, a_01], [a_10, a_11]], dtype=np.float64)
    elif transform_type == 'Stretch':
        both = st.checkbox('Set equal')
        if not both:
            stretch_x = st.slider(label = 'Stretch in x-direction', min_value = minv, max_value=maxv, value=1.0, step=step)
            stretch_y = st.slider(label = 'Stretch in y-direction', min_value = minv, max_value=maxv, value=1.0, step=step)
            t = np.array([[stretch_x, 0], [0, stretch_y]], dtype=np.float64)
        else:
            stretch = st.slider(label = 'Scale', min_value = minv, max_value=maxv, value=1.0, step=step)
            t = np.array([[stretch, 0], [0, stretch]], dtype=np.float64)
    elif transform_type == 'Shear':
        left, right = st.columns(2)
        with left:
            both = st.checkbox('Set equal')
        if not both:
            shear_x = st.slider(label = 'Shear in x-direction', min_value=minv, max_value=maxv, value=0.0, step=step)
            shear_y = st.slider(label = 'Shear in y-direction', min_value=minv, max_value=maxv, value=0.0, step=step)
            t = np.array([[1, shear_x], [shear_y, 1]], dtype=np.float64)
        else:
            with right:
                sign = st.checkbox('Opposite sign')
            shear = st.slider(label = 'Shear in both directions', min_value=minv, max_value=maxv, value=0.0, step=step)
            t = np.array([[1, -shear], [shear, 1]], dtype=np.float64) if sign else np.array([[1, shear], [shear, 1]], dtype=np.float64)
    else:
        st.markdown("Rotate by $\\theta$ in anti-clockwise\ndirection")
        min_theta = -180.0
        max_theta = 180.0
        theta = st.slider(label = '$\\theta$', min_value=min_theta, max_value=max_theta, value=0.0, step=step, format="%f°")
        rtheta = np.pi * theta/180.0    
        t = np.array([[np.cos(rtheta), -np.sin(rtheta)], [np.sin(rtheta), np.cos(rtheta)]], dtype=np.float64)
    st.write("---")
    st.write("The transformation matrix A is:")
    st.table(pd.DataFrame(t))
    st.write("---")
    showNormalSpace = st.checkbox(label= 'Show original space (without transform)', value=False)


if data == 'Square':
    x = np.linspace(-1,1,1000)
    y = getSquareYVectorised(x)
elif data == 'Circle':
    x = np.linspace(-1,1,1000)
    y = getCircle(x)
else:
    X, Y = getBatman(s=2)

if data != 'Batman':
    x_dash_up, y_dash_up = transform(x,y,t)
    x_dash_down, y_dash_down = transform(x,-y,t)
else:
    tmp = [transform(x, y, t) for x, y in zip(X, Y)]
    X_dash = [t[0] for t in tmp]
    Y_dash = [t[1] for t in tmp]

evl, evec = np.linalg.eig(t)
fig, ax = plt.subplots()

if showNormalSpace:
    if data != 'Batman':
        ax.plot(x, y, 'r', alpha=0.5)
        ax.plot(x, -y, 'g', alpha=0.5)
    else:
        for i, (x, y) in enumerate(zip(X, Y)):
            if black:
                ax.plot(x, y, 'k-', alpha=0.5, linewidth=1)
            elif i < 3:
                ax.plot(x, y, 'g-', alpha=0.5, linewidth=1)
            else:
                ax.plot(x, y, 'r-', alpha=0.5, linewidth=1)
    if not np.iscomplex(evec).any():
        ax.quiver(0,0,evec[0,0],evec[1,0],scale=1,scale_units ='xy',angles='xy', facecolor='black', alpha=0.5)
        ax.quiver(0,0,evec[0,1],evec[1,1],scale=1,scale_units ='xy',angles='xy', facecolor='black', alpha=0.5)
    plotGridLines(xlim,ylim,np.array([[1,0], [0,1]]),'#9D9D9D','Normal Space',0.4)

if data != 'Batman':
    ax.plot(x_dash_up,y_dash_up,'r')
    ax.plot(x_dash_down,y_dash_down, 'g')
else:
    for i, (x, y) in enumerate(zip(X_dash, Y_dash)):
        if black:
            ax.plot(x, y, 'k-', linewidth=1)
        elif i < 3:
            ax.plot(x, y, 'g', linewidth=1) 
        else: 
            ax.plot(x, y, 'r', linewidth=1)
if not (np.iscomplex(evl).any() or np.iscomplex(evec).any()):
    ax.quiver(0,0,evec[0,0]*evl[0],evec[1,0]*evl[0],scale=1,scale_units ='xy',angles='xy', facecolor='cyan', label='$eigen\ vector_{\lambda_0}$')
    ax.quiver(0,0,evec[0,1]*evl[1],evec[1,1]*evl[1],scale=1,scale_units ='xy',angles='xy', facecolor='blue', label='$eigen\ vector_{\lambda_1}$')
plotGridLines(xlim,ylim,t,'#403B3B','Transformed space',0.6)
ax.text(11,3,'|A|={:.2f}'.format(np.linalg.det(t)), fontdict={'fontsize':11})
ax.text(11,2,'D = {:.2f}'.format(discriminant(t)), fontdict={'fontsize':11})
if discriminant(t) < 0:
    ax.text(13,1,'Negative!'.format(discriminant(t)), fontdict={'fontsize':8})

ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
ax.set_aspect('equal', adjustable='box')
ax.xaxis.set_tick_params(labelbottom=False)
ax.yaxis.set_tick_params(labelleft=False)
ax.set_xticks([])
ax.set_yticks([])
fig.legend(bbox_to_anchor=(1.05, 0.86), loc=1, borderaxespad=0., fontsize=8)
st.pyplot(fig)

df = pd.DataFrame({'Eigenvalues': evl, 'Eigenvectors': [str(evec[:,0]), str(evec[:,1])],\
    'Transformed Eigenvectors': [str(evec[:,0]*evl[0]), str(evec[:,1]*evl[1])]})
st.table(df.style.format({'Eigenvalues':'{:.2f}'}))

if np.iscomplex(evl).any() or np.iscomplex(evec).any():
    st.write("Due to complex eigenvectors and eigenvalues, the transformed eigenvectors are not\
        displayed...")
    
file = open("description.md", "r")
st.markdown(file.read())