Spaces:
Runtime error
Runtime error
File size: 6,524 Bytes
f7111bf 76079d1 f7111bf f8fcffd f7111bf 1c2de4d f7111bf 1c2de4d f7111bf 76079d1 f7111bf 76079d1 b8c9155 76079d1 b8c9155 f7111bf 76079d1 f7111bf 76079d1 b3bb8b2 b8c9155 76079d1 b8c9155 76079d1 b3bb8b2 b8c9155 76079d1 f8fcffd b3bb8b2 b8c9155 b3bb8b2 1c2de4d 76079d1 b3bb8b2 1c2de4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from matplotlib import pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
from utils import getSquareYVectorised, getCircle, getBatman, transform, plotGridLines, discriminant
minv = -5.0
maxv = 5.0
step = 0.1
np.set_printoptions(precision=3)
xlim = (-10,10)
ylim = (-10,10)
st.title("Visualizing Eigenvectors with 2x2 Linear Transformations")
st.write(
"This app shows the effect of a 2x2 linear transformation on simple shapes to understand the role of eigenvectors and eigenvalues in quantifying the nature of a transformation.")
with st.sidebar:
data = st.selectbox('Select type of dataset', ['Square', 'Circle', 'Batman'])
if data == 'Batman':
black = st.checkbox(label='Black')
transform_type = st.selectbox('Select type of transformation', ['Custom', 'Stretch', 'Shear', 'Rotate'])
st.write("---")
if transform_type == 'Custom':
st.markdown("Select elements of transformation matrix $A$")
a_00 = st.slider(label = '$a_{00}$', min_value = minv, max_value=maxv, value=1.0, step=step)
a_01 = st.slider(label = '$a_{01}$', min_value = minv, max_value=maxv, value=0.0, step=step)
a_10 = st.slider(label = '$a_{10}$', min_value = minv, max_value=maxv, value=0.0, step=step)
a_11 = st.slider(label = '$a_{11}$', min_value = minv, max_value=maxv, value=1.0, step=step)
t = np.array([[a_00, a_01], [a_10, a_11]], dtype=np.float64)
elif transform_type == 'Stretch':
both = st.checkbox('Set equal')
if not both:
stretch_x = st.slider(label = 'Stretch in x-direction', min_value = minv, max_value=maxv, value=1.0, step=step)
stretch_y = st.slider(label = 'Stretch in y-direction', min_value = minv, max_value=maxv, value=1.0, step=step)
t = np.array([[stretch_x, 0], [0, stretch_y]], dtype=np.float64)
else:
stretch = st.slider(label = 'Scale', min_value = minv, max_value=maxv, value=1.0, step=step)
t = np.array([[stretch, 0], [0, stretch]], dtype=np.float64)
elif transform_type == 'Shear':
left, right = st.columns(2)
with left:
both = st.checkbox('Set equal')
if not both:
shear_x = st.slider(label = 'Shear in x-direction', min_value=minv, max_value=maxv, value=0.0, step=step)
shear_y = st.slider(label = 'Shear in y-direction', min_value=minv, max_value=maxv, value=0.0, step=step)
t = np.array([[1, shear_x], [shear_y, 1]], dtype=np.float64)
else:
with right:
sign = st.checkbox('Opposite sign')
shear = st.slider(label = 'Shear in both directions', min_value=minv, max_value=maxv, value=0.0, step=step)
t = np.array([[1, -shear], [shear, 1]], dtype=np.float64) if sign else np.array([[1, shear], [shear, 1]], dtype=np.float64)
else:
st.markdown("Rotate by $\\theta$ in anti-clockwise\ndirection")
min_theta = -180.0
max_theta = 180.0
theta = st.slider(label = '$\\theta$', min_value=min_theta, max_value=max_theta, value=0.0, step=step, format="%f°")
rtheta = np.pi * theta/180.0
t = np.array([[np.cos(rtheta), -np.sin(rtheta)], [np.sin(rtheta), np.cos(rtheta)]], dtype=np.float64)
st.write("---")
st.write("The transformation matrix A is:")
st.table(pd.DataFrame(t))
st.write("---")
showNormalSpace = st.checkbox(label= 'Show original space (without transform)', value=False)
if data == 'Square':
x = np.linspace(-1,1,1000)
y = getSquareYVectorised(x)
elif data == 'Circle':
x = np.linspace(-1,1,1000)
y = getCircle(x)
else:
X, Y = getBatman(s=2)
if data != 'Batman':
x_dash_up, y_dash_up = transform(x,y,t)
x_dash_down, y_dash_down = transform(x,-y,t)
else:
tmp = [transform(x, y, t) for x, y in zip(X, Y)]
X_dash = [t[0] for t in tmp]
Y_dash = [t[1] for t in tmp]
evl, evec = np.linalg.eig(t)
fig, ax = plt.subplots()
if showNormalSpace:
if data != 'Batman':
ax.plot(x, y, 'r', alpha=0.5)
ax.plot(x, -y, 'g', alpha=0.5)
else:
for i, (x, y) in enumerate(zip(X, Y)):
if black:
ax.plot(x, y, 'k-', alpha=0.5, linewidth=1)
elif i < 3:
ax.plot(x, y, 'g-', alpha=0.5, linewidth=1)
else:
ax.plot(x, y, 'r-', alpha=0.5, linewidth=1)
if not np.iscomplex(evec).any():
ax.quiver(0,0,evec[0,0],evec[1,0],scale=1,scale_units ='xy',angles='xy', facecolor='black', alpha=0.5)
ax.quiver(0,0,evec[0,1],evec[1,1],scale=1,scale_units ='xy',angles='xy', facecolor='black', alpha=0.5)
plotGridLines(xlim,ylim,np.array([[1,0], [0,1]]),'#9D9D9D','Normal Space',0.4)
if data != 'Batman':
ax.plot(x_dash_up,y_dash_up,'r')
ax.plot(x_dash_down,y_dash_down, 'g')
else:
for i, (x, y) in enumerate(zip(X_dash, Y_dash)):
if black:
ax.plot(x, y, 'k-', linewidth=1)
elif i < 3:
ax.plot(x, y, 'g', linewidth=1)
else:
ax.plot(x, y, 'r', linewidth=1)
if not (np.iscomplex(evl).any() or np.iscomplex(evec).any()):
ax.quiver(0,0,evec[0,0]*evl[0],evec[1,0]*evl[0],scale=1,scale_units ='xy',angles='xy', facecolor='cyan', label='$eigen\ vector_{\lambda_0}$')
ax.quiver(0,0,evec[0,1]*evl[1],evec[1,1]*evl[1],scale=1,scale_units ='xy',angles='xy', facecolor='blue', label='$eigen\ vector_{\lambda_1}$')
plotGridLines(xlim,ylim,t,'#403B3B','Transformed space',0.6)
ax.text(11,3,'|A|={:.2f}'.format(np.linalg.det(t)), fontdict={'fontsize':11})
ax.text(11,2,'D = {:.2f}'.format(discriminant(t)), fontdict={'fontsize':11})
if discriminant(t) < 0:
ax.text(13,1,'Negative!'.format(discriminant(t)), fontdict={'fontsize':8})
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
ax.set_aspect('equal', adjustable='box')
ax.xaxis.set_tick_params(labelbottom=False)
ax.yaxis.set_tick_params(labelleft=False)
ax.set_xticks([])
ax.set_yticks([])
fig.legend(bbox_to_anchor=(1.05, 0.86), loc=1, borderaxespad=0., fontsize=8)
st.pyplot(fig)
df = pd.DataFrame({'Eigenvalues': evl, 'Eigenvectors': [str(evec[:,0]), str(evec[:,1])],\
'Transformed Eigenvectors': [str(evec[:,0]*evl[0]), str(evec[:,1]*evl[1])]})
st.table(df.style.format({'Eigenvalues':'{:.2f}'}))
if np.iscomplex(evl).any() or np.iscomplex(evec).any():
st.write("Due to complex eigenvectors and eigenvalues, the transformed eigenvectors are not\
displayed...")
file = open("description.md", "r")
st.markdown(file.read()) |