## Restormer: Efficient Transformer for High-Resolution Image Restoration ## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang ## https://arxiv.org/abs/2111.09881 import torch import torch.nn.functional as F import os from skimage import img_as_ubyte import cv2 import argparse parser = argparse.ArgumentParser(description='Test Restormer on your own images') parser.add_argument('--input_path', default='./temp/image.jpg', type=str, help='Directory of input images or path of single image') parser.add_argument('--result_dir', default='./temp/', type=str, help='Directory for restored results') parser.add_argument('--task', required=True, type=str, help='Task to run', choices=['Motion_Deblurring', 'Single_Image_Defocus_Deblurring', 'Deraining', 'Real_Denoising', 'Gaussian_Gray_Denoising', 'Gaussian_Color_Denoising']) args = parser.parse_args() task = args.task out_dir = os.path.join(args.result_dir, task) os.makedirs(out_dir, exist_ok=True) if task == 'Motion_Deblurring': model = torch.jit.load('motion_deblurring.pt') elif task == 'Single_Image_Defocus_Deblurring': model = torch.jit.load('single_image_defocus_deblurring.pt') elif task == 'Deraining': model = torch.jit.load('deraining.pt') elif task == 'Real_Denoising': model = torch.jit.load('real_denoising.pt') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') # stx() model = model.to(device) img_multiple_of = 8 with torch.inference_mode(): if torch.cuda.is_available(): torch.cuda.ipc_collect() torch.cuda.empty_cache() img = cv2.cvtColor(cv2.imread(args.input_path), cv2.COLOR_BGR2RGB) input_ = torch.from_numpy(img).float().div(255.).permute(2,0,1).unsqueeze(0).to(device) # Pad the input if not_multiple_of 8 h,w = input_.shape[2], input_.shape[3] H,W = ((h+img_multiple_of)//img_multiple_of)*img_multiple_of, ((w+img_multiple_of)//img_multiple_of)*img_multiple_of padh = H-h if h%img_multiple_of!=0 else 0 padw = W-w if w%img_multiple_of!=0 else 0 input_ = F.pad(input_, (0,padw,0,padh), 'reflect') # print(h,w) restored = torch.clamp(model(input_),0,1) # Unpad the output restored = img_as_ubyte(restored[:,:,:h,:w].permute(0, 2, 3, 1).cpu().detach().numpy()[0]) out_path = os.path.join(out_dir, os.path.split(args.input_path)[-1]) cv2.imwrite(out_path,cv2.cvtColor(restored, cv2.COLOR_RGB2BGR)) # print(f"\nRestored images are saved at {out_dir}")