File size: 7,181 Bytes
e5eefc6
 
530388a
e5eefc6
 
 
 
 
530388a
 
 
 
 
 
 
e5eefc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530388a
e5e94eb
e5eefc6
530388a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5eefc6
 
e8cd255
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import shutil
from pathlib import Path
from typing import Dict, Union, Optional

import numpy as np
import gradio as gr
from ultralytics import YOLO

from utils import (
    download_model,
    detect_image, 
    detect_video, 
    get_csv_annotate, 
    get_matplotlib_fig,
)


# ======================= MODEL ===================================

MODELS_DIR = Path('models')
MODELS_DIR.mkdir(exist_ok=True)

MODELS = {
    'yolov11n.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt',
    'yolov11s.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt',
    'yolov11m.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt',
    'yolov11l.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt',
    'yolov11x.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt',
}
MODEL_NAMES = list(MODELS.keys())

model_path = download_model(MODEL_NAMES[0], MODELS_DIR, MODELS)
default_model = YOLO(model_path)

IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png']
VIDEO_EXTENSIONS = ['.mp4', '.avi']


# =================== ADDITIONAL INTERFACE FUNCTIONS ========================

def change_model(model_state: Dict[str, YOLO], model_name: str):
    progress = gr.Progress()
    progress(0.3, desc='Downloading the model')
    model_path = download_model(model_name, MODELS_DIR, MODELS)
    progress(0.7, desc='Model initialization')
    model_state['model'] = YOLO(model_path)
    return f'Model {model_name} initialized'


def detect(file_path: str, file_link: str, model_state: Dict[str, YOLO], conf: float, iou: float):
    model = model_state['model']
    if file_link:
        file_path = file_link

    file_ext = f'.{file_path.rsplit(".")[-1]}'
    if file_ext in IMAGE_EXTENSIONS:
        np_image = detect_image(file_path, model, conf, iou)
        return np_image, "Detection complete, opening image..."
    elif file_ext in VIDEO_EXTENSIONS or 'youtube.com' in file_link:
        video_path = detect_video(file_path, model, conf, iou)
        return video_path, "Detection complete, converting and opening video..."
    else:
        gr.Info('Invalid image or video format...')
        return None, None

# =================== INTERFACE COMPONENTS ============================

def get_output_media_components(detect_result: Optional[Union[np.ndarray, str, Path]] = None):
    visible = isinstance(detect_result, np.ndarray)
    image_output = gr.Image(
        value=detect_result if visible else None,
        type="numpy",
        width=640,
        height=480,
        visible=visible,
        label='Output',
        )
    visible = isinstance(detect_result, (str, Path))
    video_output = gr.Video(
        value=detect_result if visible else None,
        width=640,
        height=480,
        visible=visible,
        label='Output',
        )
    clear_btn = gr.Button(
        value='Clear',
        scale=0,
        visible=detect_result is not None,
        )
    return image_output, video_output, clear_btn


def get_download_csv_btn(csv_annotations_path: Optional[Path] = None):
    download_csv_btn = gr.DownloadButton(
        label='Download csv annotations for video',
        value=csv_annotations_path,
        scale=0,
        visible=csv_annotations_path is not None,
        )
    return download_csv_btn

# =================== APPINTERFACE ==========================

css = '''.gradio-container {width: 70% !important}'''

with gr.Blocks(css=css) as demo:
    with gr.Tab('Detection image / video'):
        gr.HTML("""<h3 style='text-align: center'>YOLOv11 Detector</h3>""")
        
        model_state = gr.State({'model': default_model})
        detect_result = gr.State(None)
        csv_annotations_path = gr.State(None)

        with gr.Row():
            with gr.Column():
                file_path = gr.File(file_types=['image', 'video'], file_count='single', label='Select image or video')
                
                # file_link = gr.Textbox(label='Direct link to image or YouTube link')
                file_link = gr.State(None)
                
                model_name = gr.Radio(choices=MODEL_NAMES, value=MODEL_NAMES[0], label='Select YOLO model')
                conf = gr.Slider(0, 1, value=0.5, step=0.05, label='Confidence')
                iou = gr.Slider(0, 1, value=0.7, step=0.1, label='IOU')
                status_message = gr.Textbox(value='Ready to go', label='Status')
                detect_btn = gr.Button('Detect', interactive=True)

            with gr.Column():
                image_output, video_output, clear_btn = get_output_media_components()
                download_csv_btn = get_download_csv_btn()

        model_name.change(
            fn=lambda: gr.update(interactive=False),
            inputs=None,
            outputs=[detect_btn],
        ).then(
            fn=change_model,
            inputs=[model_state, model_name],
            outputs=[status_message],
        ).success(
            fn=lambda: gr.update(interactive=True),
            inputs=None,
            outputs=[detect_btn],
        )

        detect_btn.click(
            fn=detect,
            inputs=[file_path, file_link, model_state, conf, iou],
            outputs=[detect_result, status_message],
        ).success(
            fn=get_output_media_components,
            inputs=[detect_result],
            outputs=[image_output, video_output, clear_btn],
        ).then(
            fn=lambda: 'Ready to go',
            inputs=None,
            outputs=[status_message],
        ).then(
            fn=get_csv_annotate,
            inputs=[detect_result],
            outputs=[csv_annotations_path],
        ).success(
            fn=get_download_csv_btn,
            inputs=[csv_annotations_path],
            outputs=[download_csv_btn],
        )

        def clear_results_dir(detect_result):
            if isinstance(detect_result, Path):
                shutil.rmtree(detect_result.parent, ignore_errors=True)

        clear_components = [image_output, video_output, clear_btn, download_csv_btn]
        clear_btn.click(
            fn=lambda: [gr.update(visible=False) for _ in range(len(clear_components))],
            inputs=None,
            outputs=clear_components,
        ).then(
            fn=clear_results_dir,
            inputs=[detect_result],
            outputs=None,
        ).then(
            fn=lambda: (None, None),
            inputs=None,
            outputs=[detect_result, csv_annotations_path]
            )

        gr.HTML("""<h3 style='text-align: center'>
        <a href="https://github.com/sergey21000/yolo-detector" target='_blank'>GitHub Repository</a></h3>
        """)


    with gr.Tab('Show detection video results'):
        show_results_btn = gr.Button('Show detection results', scale=1)
        gr_info = 'To display the results, perform video detection on the first tab'
        show_results_btn.click(
            fn=lambda csv_path: get_matplotlib_fig(csv_path) if csv_path is not None else gr.Info(gr_info),
            inputs=[csv_annotations_path],
            outputs=gr.Plot(),
        )

demo.launch(server_name='0.0.0.0')  # debug=True