Spaces:
Sleeping
Sleeping
File size: 7,181 Bytes
e5eefc6 530388a e5eefc6 530388a e5eefc6 530388a e5e94eb e5eefc6 530388a e5eefc6 e8cd255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import shutil
from pathlib import Path
from typing import Dict, Union, Optional
import numpy as np
import gradio as gr
from ultralytics import YOLO
from utils import (
download_model,
detect_image,
detect_video,
get_csv_annotate,
get_matplotlib_fig,
)
# ======================= MODEL ===================================
MODELS_DIR = Path('models')
MODELS_DIR.mkdir(exist_ok=True)
MODELS = {
'yolov11n.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt',
'yolov11s.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt',
'yolov11m.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt',
'yolov11l.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt',
'yolov11x.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt',
}
MODEL_NAMES = list(MODELS.keys())
model_path = download_model(MODEL_NAMES[0], MODELS_DIR, MODELS)
default_model = YOLO(model_path)
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png']
VIDEO_EXTENSIONS = ['.mp4', '.avi']
# =================== ADDITIONAL INTERFACE FUNCTIONS ========================
def change_model(model_state: Dict[str, YOLO], model_name: str):
progress = gr.Progress()
progress(0.3, desc='Downloading the model')
model_path = download_model(model_name, MODELS_DIR, MODELS)
progress(0.7, desc='Model initialization')
model_state['model'] = YOLO(model_path)
return f'Model {model_name} initialized'
def detect(file_path: str, file_link: str, model_state: Dict[str, YOLO], conf: float, iou: float):
model = model_state['model']
if file_link:
file_path = file_link
file_ext = f'.{file_path.rsplit(".")[-1]}'
if file_ext in IMAGE_EXTENSIONS:
np_image = detect_image(file_path, model, conf, iou)
return np_image, "Detection complete, opening image..."
elif file_ext in VIDEO_EXTENSIONS or 'youtube.com' in file_link:
video_path = detect_video(file_path, model, conf, iou)
return video_path, "Detection complete, converting and opening video..."
else:
gr.Info('Invalid image or video format...')
return None, None
# =================== INTERFACE COMPONENTS ============================
def get_output_media_components(detect_result: Optional[Union[np.ndarray, str, Path]] = None):
visible = isinstance(detect_result, np.ndarray)
image_output = gr.Image(
value=detect_result if visible else None,
type="numpy",
width=640,
height=480,
visible=visible,
label='Output',
)
visible = isinstance(detect_result, (str, Path))
video_output = gr.Video(
value=detect_result if visible else None,
width=640,
height=480,
visible=visible,
label='Output',
)
clear_btn = gr.Button(
value='Clear',
scale=0,
visible=detect_result is not None,
)
return image_output, video_output, clear_btn
def get_download_csv_btn(csv_annotations_path: Optional[Path] = None):
download_csv_btn = gr.DownloadButton(
label='Download csv annotations for video',
value=csv_annotations_path,
scale=0,
visible=csv_annotations_path is not None,
)
return download_csv_btn
# =================== APPINTERFACE ==========================
css = '''.gradio-container {width: 70% !important}'''
with gr.Blocks(css=css) as demo:
with gr.Tab('Detection image / video'):
gr.HTML("""<h3 style='text-align: center'>YOLOv11 Detector</h3>""")
model_state = gr.State({'model': default_model})
detect_result = gr.State(None)
csv_annotations_path = gr.State(None)
with gr.Row():
with gr.Column():
file_path = gr.File(file_types=['image', 'video'], file_count='single', label='Select image or video')
# file_link = gr.Textbox(label='Direct link to image or YouTube link')
file_link = gr.State(None)
model_name = gr.Radio(choices=MODEL_NAMES, value=MODEL_NAMES[0], label='Select YOLO model')
conf = gr.Slider(0, 1, value=0.5, step=0.05, label='Confidence')
iou = gr.Slider(0, 1, value=0.7, step=0.1, label='IOU')
status_message = gr.Textbox(value='Ready to go', label='Status')
detect_btn = gr.Button('Detect', interactive=True)
with gr.Column():
image_output, video_output, clear_btn = get_output_media_components()
download_csv_btn = get_download_csv_btn()
model_name.change(
fn=lambda: gr.update(interactive=False),
inputs=None,
outputs=[detect_btn],
).then(
fn=change_model,
inputs=[model_state, model_name],
outputs=[status_message],
).success(
fn=lambda: gr.update(interactive=True),
inputs=None,
outputs=[detect_btn],
)
detect_btn.click(
fn=detect,
inputs=[file_path, file_link, model_state, conf, iou],
outputs=[detect_result, status_message],
).success(
fn=get_output_media_components,
inputs=[detect_result],
outputs=[image_output, video_output, clear_btn],
).then(
fn=lambda: 'Ready to go',
inputs=None,
outputs=[status_message],
).then(
fn=get_csv_annotate,
inputs=[detect_result],
outputs=[csv_annotations_path],
).success(
fn=get_download_csv_btn,
inputs=[csv_annotations_path],
outputs=[download_csv_btn],
)
def clear_results_dir(detect_result):
if isinstance(detect_result, Path):
shutil.rmtree(detect_result.parent, ignore_errors=True)
clear_components = [image_output, video_output, clear_btn, download_csv_btn]
clear_btn.click(
fn=lambda: [gr.update(visible=False) for _ in range(len(clear_components))],
inputs=None,
outputs=clear_components,
).then(
fn=clear_results_dir,
inputs=[detect_result],
outputs=None,
).then(
fn=lambda: (None, None),
inputs=None,
outputs=[detect_result, csv_annotations_path]
)
gr.HTML("""<h3 style='text-align: center'>
<a href="https://github.com/sergey21000/yolo-detector" target='_blank'>GitHub Repository</a></h3>
""")
with gr.Tab('Show detection video results'):
show_results_btn = gr.Button('Show detection results', scale=1)
gr_info = 'To display the results, perform video detection on the first tab'
show_results_btn.click(
fn=lambda csv_path: get_matplotlib_fig(csv_path) if csv_path is not None else gr.Info(gr_info),
inputs=[csv_annotations_path],
outputs=gr.Plot(),
)
demo.launch(server_name='0.0.0.0') # debug=True |