File size: 6,322 Bytes
e5eefc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e94eb
 
e5eefc6
 
 
 
 
 
 
 
 
f587fbb
e5eefc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c3f5a
e5eefc6
 
e8cd255
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import shutil
from pathlib import Path
from typing import List, Dict, Union, Tuple, Literal, Optional

import numpy as np
import gradio as gr
from ultralytics import YOLO

from utils import download_model, detect_image, detect_video, get_csv_annotate


# ======================= MODEL ===================================

MODELS_DIR = Path('models')
MODELS_DIR.mkdir(exist_ok=True)

MODELS = {
    'yolov11n.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt',
    'yolov11s.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt',
    'yolov11m.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt',
    'yolov11l.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt',
    'yolov11x.pt': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt',
}
MODEL_NAMES = list(MODELS.keys())

model_path = download_model(MODEL_NAMES[0], MODELS_DIR, MODELS)
default_model = YOLO(model_path)

IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png']
VIDEO_EXTENSIONS = ['.mp4', '.avi']


# =================== ADDITIONAL INTERFACE FUNCTIONS ========================

def change_model(model_state: Dict[str, YOLO], model_name: str):
    progress = gr.Progress()
    progress(0.3, desc='Downloading the model')
    model_path = download_model(model_name, MODELS_DIR, MODELS)
    progress(0.7, desc='Model initialization')
    model_state['model'] = YOLO(model_path)
    return f'Model {model_name} initialized'


def detect(file_path: str, file_link: str, model_state: Dict[str, YOLO], conf: float, iou: float):
    model = model_state['model']
    if file_link:
        file_path = file_link

    file_ext = f'.{file_path.rsplit(".")[-1]}'
    if file_ext in IMAGE_EXTENSIONS:
        np_image = detect_image(file_path, model, conf, iou)
        return np_image, "Detection complete, opening image..."
    elif file_ext in VIDEO_EXTENSIONS or 'youtube.com' in file_link:
        video_path = detect_video(file_path, model, conf, iou)
        return video_path, "Detection complete, converting and opening video..."
    else:
        gr.Info('Invalid image or video format...')
        return None, None

# =================== INTERFACE COMPONENTS ============================

def get_output_media_components(detect_result: Optional[Union[np.ndarray, str, Path]] = None):
    visible = isinstance(detect_result, np.ndarray)
    image_output = gr.Image(
        value=detect_result if visible else None,
        type="numpy",
        width=640,
        height=480,
        visible=visible,
        label='Output',
        )
    visible = isinstance(detect_result, (str, Path))
    video_output = gr.Video(
        value=detect_result if visible else None,
        width=640,
        height=480,
        visible=visible,
        label='Output',
        )
    clear_btn = gr.Button(
        value='Clear',
        scale=0,
        visible=detect_result is not None,
        )
    return image_output, video_output, clear_btn


def get_download_csv_btn(csv_annotations_path: Optional[Path] = None):
    download_csv_btn = gr.DownloadButton(
        label='Download csv annotations for video',
        value=csv_annotations_path,
        scale=0,
        visible=csv_annotations_path is not None,
        )
    return download_csv_btn

# =================== APPINTERFACE ==========================

css = '''.gradio-container { width: 70% !important }'''

with gr.Blocks(css=css) as demo:
    gr.HTML("""<h3 style='text-align: center'>YOLOv11 Detector</h3>""")
    
    model_state = gr.State({'model': default_model})
    detect_result = gr.State(None)
    csv_annotations_path = gr.State(None)

    with gr.Row():
        with gr.Column():
            file_path = gr.File(file_types=['image', 'video'], file_count='single', label='Select image or video')
            file_link = gr.Textbox(label='Direct link to image or YouTube link')
            model_name = gr.Radio(choices=MODEL_NAMES, value=MODEL_NAMES[0], label='Select YOLO model')
            conf = gr.Slider(0, 1, value=0.5, step=0.05, label='Confidence')
            iou = gr.Slider(0, 1, value=0.7, step=0.1, label='IOU')
            status_message = gr.Textbox(value='Ready to go', label='Status')
            detect_btn = gr.Button('Detect', interactive=True)

        with gr.Column():
            image_output, video_output, clear_btn = get_output_media_components()
            download_csv_btn = get_download_csv_btn()

    model_name.change(
        fn=lambda: gr.update(interactive=False),
        inputs=None,
        outputs=[detect_btn],
    ).then(
        fn=change_model,
        inputs=[model_state, model_name],
        outputs=[status_message],
    ).success(
        fn=lambda: gr.update(interactive=True),
        inputs=None,
        outputs=[detect_btn],
    )

    detect_btn.click(
        fn=detect,
        inputs=[file_path, file_link, model_state, conf, iou],
        outputs=[detect_result, status_message],
    ).success(
        fn=get_output_media_components,
        inputs=[detect_result],
        outputs=[image_output, video_output, clear_btn],
    ).then(
        fn=lambda: 'Ready to go',
        inputs=None,
        outputs=[status_message],
    ).then(
        fn=get_csv_annotate,
        inputs=[detect_result],
        outputs=[csv_annotations_path],
    ).success(
        fn=get_download_csv_btn,
        inputs=[csv_annotations_path],
        outputs=[download_csv_btn],
    )

    def clear_results_dir(detect_result):
        if isinstance(detect_result, Path):
            shutil.rmtree(detect_result.parent, ignore_errors=True)

    clear_components = [image_output, video_output, clear_btn, download_csv_btn]
    clear_btn.click(
        fn=lambda: [gr.update(visible=False) for _ in range(len(clear_components))],
        inputs=None,
        outputs=clear_components,
    ).then(
        fn=clear_results_dir,
        inputs=[detect_result],
        outputs=None,
    ).then(
        fn=lambda: (None, None),
        inputs=None,
        outputs=[detect_result, csv_annotations_path]
        )

    gr.HTML("""<h3 style='text-align: center'>
    <a href="https://github.com/sergey21000/yolo-detector" target='_blank'>GitHub Repository</a></h3>
    """)
    
demo.launch(server_name='0.0.0.0')  # debug=True