Spaces:
Sleeping
Sleeping
File size: 10,088 Bytes
ef59540 a10dd76 ef59540 a10dd76 ef59540 62283cf a10dd76 ef59540 a10dd76 ced57cc a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 972b192 ef59540 972b192 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 a10dd76 ef59540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
from pathlib import Path
from shutil import rmtree
from typing import Union, List, Dict, Tuple, Optional
from tqdm import tqdm
import requests
import gradio as gr
from llama_cpp import Llama
# ================== ANNOTATIONS ========================
CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]]
MODEL_DICT = Dict[str, Llama]
# ================== FUNCS =============================
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
response = requests.get(file_url, stream=True)
if response.status_code != 200:
raise Exception(f'Файл недоступен для скачивания по ссылке: {file_url}')
total_size = int(response.headers.get('content-length', 0))
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
progress_gradio = gr.Progress()
completed_size = 0
with open(file_path, 'wb') as file:
for data in response.iter_content(chunk_size=4096):
size = file.write(data)
progress_tqdm.update(size)
completed_size += size
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
progress_gradio(completed_size/total_size, desc=desc)
def download_gguf_and_init_model(gguf_url: str, model_dict: MODEL_DICT) -> Tuple[MODEL_DICT, bool, str]:
log = ''
if not gguf_url.endswith('.gguf'):
log += f'The link must be a direct link to the GGUF file\n'
return model_dict, log
gguf_filename = gguf_url.rsplit('/')[-1]
model_path = MODELS_PATH / gguf_filename
progress = gr.Progress()
if not model_path.is_file():
progress(0.3, desc='Шаг 1/2: Loading GGUF model file')
try:
download_file(gguf_url, model_path)
log += f'Model file {gguf_filename} successfully loaded\n'
except Exception as ex:
log += f'Error loading model from link {gguf_url}, error code:\n{ex}\n'
curr_model = model_dict.get('model')
if curr_model is None:
log += f'Model is missing from dictionary "model_dict"\n'
return model_dict, load_log
curr_model_filename = Path(curr_model.model_path).name
log += f'Current initialized model: {curr_model_filename}\n'
return model_dict, log
else:
log += f'Model file {gguf_filename} loaded, initializing model...\n'
progress(0.7, desc='Шаг 2/2: Model initialization')
model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=True)
model_dict = {'model': model}
support_system_role = 'System role not supported' not in model.metadata['tokenizer.chat_template']
log += f'Model {gguf_filename} initialized\n'
return model_dict, support_system_role, log
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
if user_message:
chatbot.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message})
return '', chatbot
def bot_response_to_chatbot(
chatbot: CHAT_HISTORY,
model_dict: MODEL_DICT,
system_prompt: str,
support_system_role: bool,
history_len: int,
do_sample: bool,
*generate_args,
):
model = model_dict.get('model')
if model is None:
gr.Info('Model not initialized')
yield chatbot
return
if len(chatbot) == 0 or chatbot[-1]['role'] == 'assistant':
yield chatbot
return
messages = []
if support_system_role and system_prompt:
messages.append({'role': 'system', 'metadata': {'title': None}, 'content': system_prompt})
if history_len != 0:
messages.extend(chatbot[:-1][-(history_len*2):])
messages.append(chatbot[-1])
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
if not do_sample:
gen_kwargs['top_p'] = 0.0
gen_kwargs['top_k'] = 1
gen_kwargs['repeat_penalty'] = 1.0
stream_response = model.create_chat_completion(
messages=messages,
stream=True,
**gen_kwargs,
)
chatbot.append({'role': 'assistant', 'metadata': {'title': None}, 'content': ''})
for chunk in stream_response:
token = chunk['choices'][0]['delta'].get('content')
if token is not None:
chatbot[-1]['content'] += token
yield chatbot
def get_system_prompt_component(interactive: bool) -> gr.Textbox:
value = '' if interactive else 'System prompt is not supported by this model'
return gr.Textbox(value=value, label='System prompt', interactive=interactive)
def get_generate_args(do_sample: bool) -> List[gr.component]:
generate_args = [
gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
gr.Slider(minimum=0, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
]
return generate_args
# ================== VARIABLES =============================
MODELS_PATH = Path('models')
MODELS_PATH.mkdir(exist_ok=True)
DEFAULT_GGUF_URL = 'https://huggingface.co./bartowski/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it-Q8_0.gguf'
start_model_dict, start_support_system_role, start_load_log = download_gguf_and_init_model(
gguf_url=DEFAULT_GGUF_URL, model_dict={},
)
GENERATE_KWARGS = dict(
temperature=0.2,
top_p=0.95,
top_k=40,
repeat_penalty=1.0,
)
theme = gr.themes.Base(primary_hue='green', secondary_hue='yellow', neutral_hue='zinc').set(
loader_color='rgb(0, 255, 0)',
slider_color='rgb(0, 200, 0)',
body_text_color_dark='rgb(0, 200, 0)',
button_secondary_background_fill_dark='green',
)
css = '''.gradio-container {width: 60% !important}'''
# ================== INTERFACE =============================
with gr.Blocks(theme=theme, css=css) as interface:
model_dict = gr.State(start_model_dict)
support_system_role = gr.State(start_support_system_role)
# ================= CHAT BOT PAGE ======================
with gr.Tab('Chatbot'):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
type='messages', # new in gradio 5+
show_copy_button=True,
bubble_full_width=False,
height=480,
)
user_message = gr.Textbox(label='User')
with gr.Row():
user_message_btn = gr.Button('Send')
stop_btn = gr.Button('Stop')
clear_btn = gr.Button('Clear')
system_prompt = get_system_prompt_component(interactive=support_system_role.value)
with gr.Column(scale=1, min_width=80):
with gr.Group():
gr.Markdown('Length of message history')
history_len = gr.Slider(
minimum=0,
maximum=10,
value=0,
step=1,
info='Number of previous messages taken into account in history',
label='history_len',
show_label=False,
)
with gr.Group():
gr.Markdown('Generation parameters')
do_sample = gr.Checkbox(
value=False,
label='do_sample',
info='Activate random sampling',
)
generate_args = get_generate_args(do_sample.value)
do_sample.change(
fn=get_generate_args,
inputs=do_sample,
outputs=generate_args,
show_progress=False,
)
generate_event = gr.on(
triggers=[user_message.submit, user_message_btn.click],
fn=user_message_to_chatbot,
inputs=[user_message, chatbot],
outputs=[user_message, chatbot],
).then(
fn=bot_response_to_chatbot,
inputs=[chatbot, model_dict, system_prompt, support_system_role, history_len, do_sample, *generate_args],
outputs=[chatbot],
)
stop_btn.click(
fn=None,
inputs=None,
outputs=None,
cancels=generate_event,
)
clear_btn.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
)
# ================= LOAD MODELS PAGE ======================
with gr.Tab('Load model'):
gguf_url = gr.Textbox(
value='',
label='Link to GGUF',
placeholder='URL link to the model in GGUF format',
)
load_model_btn = gr.Button('Downloading GGUF and initializing the model')
load_log = gr.Textbox(
value=start_load_log,
label='Model loading status',
lines=3,
)
load_model_btn.click(
fn=download_gguf_and_init_model,
inputs=[gguf_url, model_dict],
outputs=[model_dict, support_system_role, load_log],
).success(
fn=get_system_prompt_component,
inputs=[support_system_role],
outputs=[system_prompt],
)
gr.HTML("""<h3 style='text-align: center'>
<a href="https://github.com/sergey21000/gradio-llamacpp-chatbot" target='_blank'>GitHub Repository</a></h3>
""")
interface.launch(server_name='0.0.0.0', server_port=7860) |