Spaces:
Running
Running
sergey21000
commited on
Commit
•
fa7dd9e
1
Parent(s):
18c8c33
Upload 5 files
Browse files- app.py +400 -0
- config.py +105 -0
- requirements-base.txt +9 -0
- requirements-cpu.txt +5 -0
- utils.py +495 -0
app.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from langchain_core.vectorstores import VectorStore
|
5 |
+
|
6 |
+
from config import (
|
7 |
+
LLM_MODEL_REPOS,
|
8 |
+
EMBED_MODEL_REPOS,
|
9 |
+
SUBTITLES_LANGUAGES,
|
10 |
+
GENERATE_KWARGS,
|
11 |
+
)
|
12 |
+
|
13 |
+
from utils import (
|
14 |
+
load_llm_model,
|
15 |
+
load_embed_model,
|
16 |
+
load_documents_and_create_db,
|
17 |
+
user_message_to_chatbot,
|
18 |
+
update_user_message_with_context,
|
19 |
+
get_llm_response,
|
20 |
+
get_gguf_model_names,
|
21 |
+
add_new_model_repo,
|
22 |
+
clear_llm_folder,
|
23 |
+
clear_embed_folder,
|
24 |
+
get_memory_usage,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
# ============ INTERFACE COMPONENT INITIALIZATION FUNCS ============
|
29 |
+
|
30 |
+
def get_rag_settings(rag_mode: bool, render: bool = True):
|
31 |
+
k = gr.Radio(
|
32 |
+
choices=[1, 2, 3, 4, 5, 'all'],
|
33 |
+
value=2,
|
34 |
+
label='Number of relevant documents for search',
|
35 |
+
visible=rag_mode,
|
36 |
+
render=render,
|
37 |
+
)
|
38 |
+
score_threshold = gr.Slider(
|
39 |
+
minimum=0,
|
40 |
+
maximum=1,
|
41 |
+
value=0.5,
|
42 |
+
step=0.05,
|
43 |
+
label='relevance_scores_threshold',
|
44 |
+
visible=rag_mode,
|
45 |
+
render=render,
|
46 |
+
)
|
47 |
+
return k, score_threshold
|
48 |
+
|
49 |
+
|
50 |
+
def get_user_message_with_context(text: str, rag_mode: bool) -> gr.component:
|
51 |
+
num_lines = len(text.split('\n'))
|
52 |
+
max_lines = 10
|
53 |
+
num_lines = max_lines if num_lines > max_lines else num_lines
|
54 |
+
return gr.Textbox(
|
55 |
+
text,
|
56 |
+
visible=rag_mode,
|
57 |
+
interactive=False,
|
58 |
+
label='User Message With Context',
|
59 |
+
lines=num_lines,
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
def get_system_prompt_component(interactive: bool) -> gr.Textbox:
|
64 |
+
value = '' if interactive else 'System prompt is not supported by this model'
|
65 |
+
return gr.Textbox(value=value, label='System prompt', interactive=interactive)
|
66 |
+
|
67 |
+
|
68 |
+
def get_generate_args(do_sample: bool) -> List[gr.component]:
|
69 |
+
generate_args = [
|
70 |
+
gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
|
71 |
+
gr.Slider(minimum=0.1, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
|
72 |
+
gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
|
73 |
+
gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
|
74 |
+
]
|
75 |
+
return generate_args
|
76 |
+
|
77 |
+
|
78 |
+
def get_rag_mode_component(db: Optional[VectorStore]) -> gr.Checkbox:
|
79 |
+
value = visible = db is not None
|
80 |
+
return gr.Checkbox(value=value, label='RAG Mode', scale=1, visible=visible)
|
81 |
+
|
82 |
+
|
83 |
+
# ================ LOADING AND INITIALIZING MODELS ========================
|
84 |
+
|
85 |
+
start_llm_model, start_support_system_role, load_log = load_llm_model(LLM_MODEL_REPOS[0], 'gemma-2-2b-it-Q8_0.gguf')
|
86 |
+
start_embed_model, load_log = load_embed_model(EMBED_MODEL_REPOS[0])
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
# ================== APPLICATION WEB INTERFACE ============================
|
91 |
+
|
92 |
+
theme = gr.themes.Base(primary_hue='green', secondary_hue='yellow', neutral_hue='zinc').set(
|
93 |
+
loader_color='rgb(0, 255, 0)',
|
94 |
+
slider_color='rgb(0, 200, 0)',
|
95 |
+
body_text_color_dark='rgb(0, 200, 0)',
|
96 |
+
button_secondary_background_fill_dark='green',
|
97 |
+
)
|
98 |
+
css = '''.gradio-container {width: 60% !important}'''
|
99 |
+
|
100 |
+
with gr.Blocks(theme=theme, css=css) as interface:
|
101 |
+
|
102 |
+
# ==================== GRADIO STATES ===============================
|
103 |
+
|
104 |
+
documents = gr.State([])
|
105 |
+
db = gr.State(None)
|
106 |
+
user_message_with_context = gr.State('')
|
107 |
+
support_system_role = gr.State(start_support_system_role)
|
108 |
+
llm_model_repos = gr.State(LLM_MODEL_REPOS)
|
109 |
+
embed_model_repos = gr.State(EMBED_MODEL_REPOS)
|
110 |
+
llm_model = gr.State(start_llm_model)
|
111 |
+
embed_model = gr.State(start_embed_model)
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
# ==================== BOT PAGE =================================
|
116 |
+
|
117 |
+
with gr.Tab(label='Chatbot'):
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column(scale=3):
|
120 |
+
chatbot = gr.Chatbot(
|
121 |
+
show_copy_button=True,
|
122 |
+
bubble_full_width=False,
|
123 |
+
height=480,
|
124 |
+
)
|
125 |
+
user_message = gr.Textbox(label='User')
|
126 |
+
|
127 |
+
with gr.Row():
|
128 |
+
user_message_btn = gr.Button('Send')
|
129 |
+
stop_btn = gr.Button('Stop')
|
130 |
+
clear_btn = gr.Button('Clear')
|
131 |
+
|
132 |
+
# ------------- GENERATION PARAMETERS -------------------
|
133 |
+
|
134 |
+
with gr.Column(scale=1, min_width=80):
|
135 |
+
with gr.Group():
|
136 |
+
gr.Markdown('History size')
|
137 |
+
history_len = gr.Slider(
|
138 |
+
minimum=0,
|
139 |
+
maximum=5,
|
140 |
+
value=0,
|
141 |
+
step=1,
|
142 |
+
info='Number of previous messages taken into account in history',
|
143 |
+
label='history_len',
|
144 |
+
show_label=False,
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Group():
|
148 |
+
gr.Markdown('Generation parameters')
|
149 |
+
do_sample = gr.Checkbox(
|
150 |
+
value=False,
|
151 |
+
label='do_sample',
|
152 |
+
info='Activate random sampling',
|
153 |
+
)
|
154 |
+
generate_args = get_generate_args(do_sample.value)
|
155 |
+
do_sample.change(
|
156 |
+
fn=get_generate_args,
|
157 |
+
inputs=do_sample,
|
158 |
+
outputs=generate_args,
|
159 |
+
show_progress=False,
|
160 |
+
)
|
161 |
+
|
162 |
+
rag_mode = get_rag_mode_component(db=db.value)
|
163 |
+
k, score_threshold = get_rag_settings(rag_mode=rag_mode.value, render=False)
|
164 |
+
rag_mode.change(
|
165 |
+
fn=get_rag_settings,
|
166 |
+
inputs=[rag_mode],
|
167 |
+
outputs=[k, score_threshold],
|
168 |
+
)
|
169 |
+
with gr.Row():
|
170 |
+
k.render()
|
171 |
+
score_threshold.render()
|
172 |
+
|
173 |
+
# ---------------- SYSTEM PROMPT AND USER MESSAGE -----------
|
174 |
+
|
175 |
+
with gr.Accordion('Prompt', open=True):
|
176 |
+
system_prompt = get_system_prompt_component(interactive=support_system_role.value)
|
177 |
+
user_message_with_context = get_user_message_with_context(text='', rag_mode=rag_mode.value)
|
178 |
+
|
179 |
+
# ---------------- SEND, CLEAR AND STOP BUTTONS ------------
|
180 |
+
|
181 |
+
generate_event = gr.on(
|
182 |
+
triggers=[user_message.submit, user_message_btn.click],
|
183 |
+
fn=user_message_to_chatbot,
|
184 |
+
inputs=[user_message, chatbot],
|
185 |
+
outputs=[user_message, chatbot],
|
186 |
+
queue=False,
|
187 |
+
).then(
|
188 |
+
fn=update_user_message_with_context,
|
189 |
+
inputs=[chatbot, rag_mode, db, k, score_threshold],
|
190 |
+
outputs=[user_message_with_context],
|
191 |
+
).then(
|
192 |
+
fn=get_user_message_with_context,
|
193 |
+
inputs=[user_message_with_context, rag_mode],
|
194 |
+
outputs=[user_message_with_context],
|
195 |
+
).then(
|
196 |
+
fn=get_llm_response,
|
197 |
+
inputs=[chatbot, llm_model, user_message_with_context, rag_mode, system_prompt,
|
198 |
+
support_system_role, history_len, do_sample, *generate_args],
|
199 |
+
outputs=[chatbot],
|
200 |
+
)
|
201 |
+
|
202 |
+
stop_btn.click(
|
203 |
+
fn=None,
|
204 |
+
inputs=None,
|
205 |
+
outputs=None,
|
206 |
+
cancels=generate_event,
|
207 |
+
queue=False,
|
208 |
+
)
|
209 |
+
|
210 |
+
clear_btn.click(
|
211 |
+
fn=lambda: (None, ''),
|
212 |
+
inputs=None,
|
213 |
+
outputs=[chatbot, user_message_with_context],
|
214 |
+
queue=False,
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
# ================= FILE DOWNLOAD PAGE =========================
|
220 |
+
|
221 |
+
with gr.Tab(label='Load documents'):
|
222 |
+
with gr.Row(variant='compact'):
|
223 |
+
upload_files = gr.File(file_count='multiple', label='Loading text files')
|
224 |
+
web_links = gr.Textbox(lines=6, label='Links to Web sites or YouTube')
|
225 |
+
|
226 |
+
with gr.Row(variant='compact'):
|
227 |
+
chunk_size = gr.Slider(50, 2000, value=500, step=50, label='Chunk size')
|
228 |
+
chunk_overlap = gr.Slider(0, 200, value=20, step=10, label='Chunk overlap')
|
229 |
+
|
230 |
+
subtitles_lang = gr.Radio(
|
231 |
+
SUBTITLES_LANGUAGES,
|
232 |
+
value=SUBTITLES_LANGUAGES[0],
|
233 |
+
label='YouTube subtitle language',
|
234 |
+
)
|
235 |
+
|
236 |
+
load_documents_btn = gr.Button(value='Upload documents and initialize database')
|
237 |
+
load_docs_log = gr.Textbox(label='Status of loading and splitting documents', interactive=False)
|
238 |
+
|
239 |
+
load_documents_btn.click(
|
240 |
+
fn=load_documents_and_create_db,
|
241 |
+
inputs=[upload_files, web_links, subtitles_lang, chunk_size, chunk_overlap, embed_model],
|
242 |
+
outputs=[documents, db, load_docs_log],
|
243 |
+
).success(
|
244 |
+
fn=get_rag_mode_component,
|
245 |
+
inputs=[db],
|
246 |
+
outputs=[rag_mode],
|
247 |
+
)
|
248 |
+
|
249 |
+
gr.HTML("""<h3 style='text-align: center'>
|
250 |
+
<a href="https://github.com/sergey21000/chatbot-rag" target='_blank'>GitHub Repository</a></h3>
|
251 |
+
""")
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
# ================= VIEW PAGE FOR ALL DOCUMENTS =================
|
256 |
+
|
257 |
+
with gr.Tab(label='View documents'):
|
258 |
+
view_documents_btn = gr.Button(value='Show downloaded text chunks')
|
259 |
+
view_documents_textbox = gr.Textbox(
|
260 |
+
lines=1,
|
261 |
+
placeholder='To view chunks, load documents in the Load documents tab',
|
262 |
+
label='Uploaded chunks',
|
263 |
+
)
|
264 |
+
sep = '=' * 20
|
265 |
+
view_documents_btn.click(
|
266 |
+
lambda documents: f'\n{sep}\n\n'.join([doc.page_content for doc in documents]),
|
267 |
+
inputs=[documents],
|
268 |
+
outputs=[view_documents_textbox],
|
269 |
+
)
|
270 |
+
|
271 |
+
|
272 |
+
# ============== GGUF MODELS DOWNLOAD PAGE =====================
|
273 |
+
|
274 |
+
with gr.Tab('Load LLM model'):
|
275 |
+
new_llm_model_repo = gr.Textbox(
|
276 |
+
value='',
|
277 |
+
label='Add repository',
|
278 |
+
placeholder='Link to repository of HF models in GGUF format',
|
279 |
+
)
|
280 |
+
new_llm_model_repo_btn = gr.Button('Add repository')
|
281 |
+
curr_llm_model_repo = gr.Dropdown(
|
282 |
+
choices=LLM_MODEL_REPOS,
|
283 |
+
value=None,
|
284 |
+
label='HF Model Repository',
|
285 |
+
)
|
286 |
+
curr_llm_model_path = gr.Dropdown(
|
287 |
+
choices=[],
|
288 |
+
value=None,
|
289 |
+
label='GGUF model file',
|
290 |
+
)
|
291 |
+
load_llm_model_btn = gr.Button('Loading and initializing model')
|
292 |
+
load_llm_model_log = gr.Textbox(
|
293 |
+
value=f'Model {LLM_MODEL_REPOS[0]} loaded at application startup',
|
294 |
+
label='Model loading status',
|
295 |
+
lines=6,
|
296 |
+
)
|
297 |
+
|
298 |
+
with gr.Group():
|
299 |
+
gr.Markdown('Free up disk space by deleting all models except the currently selected one')
|
300 |
+
clear_llm_folder_btn = gr.Button('Clear folder')
|
301 |
+
|
302 |
+
new_llm_model_repo_btn.click(
|
303 |
+
fn=add_new_model_repo,
|
304 |
+
inputs=[new_llm_model_repo, llm_model_repos],
|
305 |
+
outputs=[curr_llm_model_repo, load_llm_model_log],
|
306 |
+
).success(
|
307 |
+
fn=lambda: '',
|
308 |
+
inputs=None,
|
309 |
+
outputs=[new_llm_model_repo],
|
310 |
+
)
|
311 |
+
|
312 |
+
curr_llm_model_repo.change(
|
313 |
+
fn=get_gguf_model_names,
|
314 |
+
inputs=[curr_llm_model_repo],
|
315 |
+
outputs=[curr_llm_model_path],
|
316 |
+
)
|
317 |
+
|
318 |
+
load_llm_model_btn.click(
|
319 |
+
fn=load_llm_model,
|
320 |
+
inputs=[curr_llm_model_repo, curr_llm_model_path],
|
321 |
+
outputs=[llm_model, support_system_role, load_llm_model_log],
|
322 |
+
queue=True,
|
323 |
+
).success(
|
324 |
+
fn=lambda log: log + get_memory_usage(),
|
325 |
+
inputs=[load_llm_model_log],
|
326 |
+
outputs=[load_llm_model_log],
|
327 |
+
).then(
|
328 |
+
fn=get_system_prompt_component,
|
329 |
+
inputs=[support_system_role],
|
330 |
+
outputs=[system_prompt],
|
331 |
+
)
|
332 |
+
|
333 |
+
clear_llm_folder_btn.click(
|
334 |
+
fn=clear_llm_folder,
|
335 |
+
inputs=[curr_llm_model_path],
|
336 |
+
outputs=None,
|
337 |
+
).success(
|
338 |
+
fn=lambda model_path: f'Models other than {model_path} removed',
|
339 |
+
inputs=[curr_llm_model_path],
|
340 |
+
outputs=None,
|
341 |
+
)
|
342 |
+
|
343 |
+
|
344 |
+
# ============== EMBEDDING MODELS DOWNLOAD PAGE =============
|
345 |
+
|
346 |
+
with gr.Tab('Load embed model'):
|
347 |
+
new_embed_model_repo = gr.Textbox(
|
348 |
+
value='',
|
349 |
+
label='Add repository',
|
350 |
+
placeholder='Link to HF model repository',
|
351 |
+
)
|
352 |
+
new_embed_model_repo_btn = gr.Button('Add repository')
|
353 |
+
curr_embed_model_repo = gr.Dropdown(
|
354 |
+
choices=EMBED_MODEL_REPOS,
|
355 |
+
value=None,
|
356 |
+
label='HF model repository',
|
357 |
+
)
|
358 |
+
|
359 |
+
load_embed_model_btn = gr.Button('Loading and initializing model')
|
360 |
+
load_embed_model_log = gr.Textbox(
|
361 |
+
value=f'Model {EMBED_MODEL_REPOS[0]} loaded at application startup',
|
362 |
+
label='Model loading status',
|
363 |
+
lines=7,
|
364 |
+
)
|
365 |
+
with gr.Group():
|
366 |
+
gr.Markdown('Free up disk space by deleting all models except the currently selected one')
|
367 |
+
clear_embed_folder_btn = gr.Button('Clear folder')
|
368 |
+
|
369 |
+
new_embed_model_repo_btn.click(
|
370 |
+
fn=add_new_model_repo,
|
371 |
+
inputs=[new_embed_model_repo, embed_model_repos],
|
372 |
+
outputs=[curr_embed_model_repo, load_embed_model_log],
|
373 |
+
).success(
|
374 |
+
fn=lambda: '',
|
375 |
+
inputs=None,
|
376 |
+
outputs=new_embed_model_repo,
|
377 |
+
)
|
378 |
+
|
379 |
+
load_embed_model_btn.click(
|
380 |
+
fn=load_embed_model,
|
381 |
+
inputs=[curr_embed_model_repo],
|
382 |
+
outputs=[embed_model, load_embed_model_log],
|
383 |
+
).success(
|
384 |
+
fn=lambda log: log + get_memory_usage(),
|
385 |
+
inputs=[load_embed_model_log],
|
386 |
+
outputs=[load_embed_model_log],
|
387 |
+
)
|
388 |
+
|
389 |
+
clear_embed_folder_btn.click(
|
390 |
+
fn=clear_embed_folder,
|
391 |
+
inputs=[curr_embed_model_repo],
|
392 |
+
outputs=None,
|
393 |
+
).success(
|
394 |
+
fn=lambda model_repo: f'Models other than {model_repo} removed',
|
395 |
+
inputs=[curr_embed_model_repo],
|
396 |
+
outputs=None,
|
397 |
+
)
|
398 |
+
|
399 |
+
|
400 |
+
interface.launch(server_name='0.0.0.0', server_port=7860) # debug=True
|
config.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
# document loaders
|
4 |
+
from langchain_community.document_loaders import (
|
5 |
+
CSVLoader,
|
6 |
+
PDFMinerLoader,
|
7 |
+
PyPDFLoader,
|
8 |
+
TextLoader,
|
9 |
+
UnstructuredHTMLLoader,
|
10 |
+
UnstructuredMarkdownLoader,
|
11 |
+
UnstructuredPowerPointLoader,
|
12 |
+
UnstructuredWordDocumentLoader,
|
13 |
+
WebBaseLoader,
|
14 |
+
YoutubeLoader,
|
15 |
+
DirectoryLoader,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
# langchain classes for extracting text from various sources
|
20 |
+
LOADER_CLASSES = {
|
21 |
+
'.csv': CSVLoader,
|
22 |
+
'.doc': UnstructuredWordDocumentLoader,
|
23 |
+
'.docx': UnstructuredWordDocumentLoader,
|
24 |
+
'.html': UnstructuredHTMLLoader,
|
25 |
+
'.md': UnstructuredMarkdownLoader,
|
26 |
+
'.pdf': PDFMinerLoader,
|
27 |
+
'.ppt': UnstructuredPowerPointLoader,
|
28 |
+
'.pptx': UnstructuredPowerPointLoader,
|
29 |
+
'.txt': TextLoader,
|
30 |
+
'web': WebBaseLoader,
|
31 |
+
'directory': DirectoryLoader,
|
32 |
+
'youtube': YoutubeLoader,
|
33 |
+
}
|
34 |
+
|
35 |
+
# languages for youtube subtitles
|
36 |
+
SUBTITLES_LANGUAGES = ['ru', 'en']
|
37 |
+
|
38 |
+
# prom template subject to context
|
39 |
+
CONTEXT_TEMPLATE = '''Ответь на вопрос при условии контекста.
|
40 |
+
|
41 |
+
Контекст:
|
42 |
+
{context}
|
43 |
+
|
44 |
+
Вопрос:
|
45 |
+
{user_message}
|
46 |
+
|
47 |
+
Ответ:'''
|
48 |
+
|
49 |
+
# dictionary for text generation config
|
50 |
+
GENERATE_KWARGS = dict(
|
51 |
+
temperature=0.2,
|
52 |
+
top_p=0.95,
|
53 |
+
top_k=40,
|
54 |
+
repeat_penalty=1.0,
|
55 |
+
)
|
56 |
+
|
57 |
+
# paths to LLM and embeddings models
|
58 |
+
LLM_MODELS_PATH = Path('models')
|
59 |
+
EMBED_MODELS_PATH = Path('embed_models')
|
60 |
+
LLM_MODELS_PATH.mkdir(exist_ok=True)
|
61 |
+
EMBED_MODELS_PATH.mkdir(exist_ok=True)
|
62 |
+
|
63 |
+
# available when running the LLM application models in GGUF format
|
64 |
+
LLM_MODEL_REPOS = [
|
65 |
+
# https://huggingface.co/bartowski/gemma-2-2b-it-GGUF
|
66 |
+
'bartowski/gemma-2-2b-it-GGUF',
|
67 |
+
# https://huggingface.co/bartowski/Qwen2.5-3B-Instruct-GGUF
|
68 |
+
'bartowski/Qwen2.5-3B-Instruct-GGUF',
|
69 |
+
# https://huggingface.co/bartowski/Qwen2.5-1.5B-Instruct-GGUF
|
70 |
+
'bartowski/Qwen2.5-1.5B-Instruct-GGUF',
|
71 |
+
# https://huggingface.co/bartowski/openchat-3.6-8b-20240522-GGUF
|
72 |
+
'bartowski/openchat-3.6-8b-20240522-GGUF',
|
73 |
+
# https://huggingface.co/bartowski/Mistral-7B-Instruct-v0.3-GGUF
|
74 |
+
'bartowski/Mistral-7B-Instruct-v0.3-GGUF',
|
75 |
+
# https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF
|
76 |
+
'bartowski/Llama-3.2-3B-Instruct-GGUF',
|
77 |
+
]
|
78 |
+
|
79 |
+
# Embedding models available at application startup
|
80 |
+
EMBED_MODEL_REPOS = [
|
81 |
+
# https://huggingface.co/sergeyzh/rubert-tiny-turbo # 117 MB
|
82 |
+
'sergeyzh/rubert-tiny-turbo',
|
83 |
+
# https://huggingface.co/cointegrated/rubert-tiny2 # 118 MB
|
84 |
+
'cointegrated/rubert-tiny2',
|
85 |
+
# https://huggingface.co/cointegrated/LaBSE-en-ru # 516 MB
|
86 |
+
'cointegrated/LaBSE-en-ru',
|
87 |
+
# https://huggingface.co/sergeyzh/LaBSE-ru-turbo # 513 MB
|
88 |
+
'sergeyzh/LaBSE-ru-turbo',
|
89 |
+
# https://huggingface.co/intfloat/multilingual-e5-large # 2.24 GB
|
90 |
+
'intfloat/multilingual-e5-large',
|
91 |
+
# https://huggingface.co/intfloat/multilingual-e5-base # 1.11 GB
|
92 |
+
'intfloat/multilingual-e5-base',
|
93 |
+
# https://huggingface.co/intfloat/multilingual-e5-small # 471 MB
|
94 |
+
'intfloat/multilingual-e5-small',
|
95 |
+
# https://huggingface.co/intfloat/multilingual-e5-large-instruct # 1.12 GB
|
96 |
+
'intfloat/multilingual-e5-large-instruct',
|
97 |
+
# https://huggingface.co/sentence-transformers/all-mpnet-base-v2 # 438 MB
|
98 |
+
'sentence-transformers/all-mpnet-base-v2',
|
99 |
+
# https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2 # 1.11 GB
|
100 |
+
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
101 |
+
# https://huggingface.co/ai-forever?search_models=ruElectra # 356 MB
|
102 |
+
'ai-forever/ruElectra-medium',
|
103 |
+
# https://huggingface.co/ai-forever/sbert_large_nlu_ru # 1.71 GB
|
104 |
+
'ai-forever/sbert_large_nlu_ru',
|
105 |
+
]
|
requirements-base.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.1
|
2 |
+
huggingface-hub==0.24.7
|
3 |
+
langchain==0.3.1
|
4 |
+
langchain-community==0.3.1
|
5 |
+
langchain-huggingface==0.1.0
|
6 |
+
pdfminer.six==20240706
|
7 |
+
youtube-transcript-api==0.6.2
|
8 |
+
psutil==6.0.0
|
9 |
+
faiss-cpu==1.8.0.post1
|
requirements-cpu.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
+
--extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
|
3 |
+
torch==2.4.1
|
4 |
+
llama_cpp_python==0.2.88
|
5 |
+
-r requirements-base.txt
|
utils.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from pathlib import Path
|
3 |
+
from shutil import rmtree
|
4 |
+
from typing import List, Tuple, Dict, Union, Optional, Any, Iterable
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
import psutil
|
8 |
+
import requests
|
9 |
+
from requests.exceptions import MissingSchema
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from llama_cpp import Llama
|
15 |
+
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
|
16 |
+
from huggingface_hub import hf_hub_download, list_repo_tree, list_repo_files, repo_info, repo_exists, snapshot_download
|
17 |
+
|
18 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
19 |
+
from langchain_community.vectorstores import FAISS
|
20 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
+
|
22 |
+
# imports for annotations
|
23 |
+
from langchain.docstore.document import Document
|
24 |
+
from langchain_core.embeddings import Embeddings
|
25 |
+
from langchain_core.vectorstores import VectorStore
|
26 |
+
|
27 |
+
from config import (
|
28 |
+
LLM_MODELS_PATH,
|
29 |
+
EMBED_MODELS_PATH,
|
30 |
+
GENERATE_KWARGS,
|
31 |
+
LOADER_CLASSES,
|
32 |
+
CONTEXT_TEMPLATE,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
# type annotations
|
37 |
+
CHAT_HISTORY = List[Tuple[Optional[str], Optional[str]]]
|
38 |
+
LLM_MODEL_DICT = Dict[str, Llama]
|
39 |
+
EMBED_MODEL_DICT = Dict[str, Embeddings]
|
40 |
+
|
41 |
+
|
42 |
+
# ===================== ADDITIONAL FUNCS =======================
|
43 |
+
|
44 |
+
# getting the amount of free memory on disk, CPU and GPU
|
45 |
+
def get_memory_usage() -> str:
|
46 |
+
print_memory = ''
|
47 |
+
|
48 |
+
memory_type = 'Disk'
|
49 |
+
psutil_stats = psutil.disk_usage('.')
|
50 |
+
memory_total = psutil_stats.total / 1024**3
|
51 |
+
memory_usage = psutil_stats.used / 1024**3
|
52 |
+
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'
|
53 |
+
|
54 |
+
memory_type = 'CPU'
|
55 |
+
psutil_stats = psutil.virtual_memory()
|
56 |
+
memory_total = psutil_stats.total / 1024**3
|
57 |
+
memory_usage = memory_total - (psutil_stats.available / 1024**3)
|
58 |
+
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'
|
59 |
+
|
60 |
+
if torch.cuda.is_available():
|
61 |
+
memory_type = 'GPU'
|
62 |
+
memory_free, memory_total = torch.cuda.mem_get_info()
|
63 |
+
memory_usage = memory_total - memory_free
|
64 |
+
print_memory += f'{memory_type} Menory Usage: {memory_usage / 1024**3:.2f} / {memory_total:.2f} GB\n'
|
65 |
+
|
66 |
+
print_memory = f'---------------\n{print_memory}---------------'
|
67 |
+
return print_memory
|
68 |
+
|
69 |
+
|
70 |
+
# clearing the list of documents
|
71 |
+
def clear_documents(documents: Iterable[Document]) -> Iterable[Document]:
|
72 |
+
def clear_text(text: str) -> str:
|
73 |
+
lines = text.split('\n')
|
74 |
+
lines = [line for line in lines if len(line.strip()) > 2]
|
75 |
+
text = '\n'.join(lines).strip()
|
76 |
+
return text
|
77 |
+
|
78 |
+
output_documents = []
|
79 |
+
for document in documents:
|
80 |
+
text = clear_text(document.page_content)
|
81 |
+
if len(text) > 10:
|
82 |
+
document.page_content = text
|
83 |
+
output_documents.append(document)
|
84 |
+
return output_documents
|
85 |
+
|
86 |
+
|
87 |
+
# ===================== INTERFACE FUNCS =============================
|
88 |
+
|
89 |
+
|
90 |
+
# ------------- LLM AND EMBEDDING MODELS LOADING ------------------------
|
91 |
+
|
92 |
+
# функция для загрузки файла по URL ссылке и отображением прогресс баров tqdm и gradio
|
93 |
+
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
|
94 |
+
response = requests.get(file_url, stream=True)
|
95 |
+
if response.status_code != 200:
|
96 |
+
raise Exception(f'The file is not available for download at the link: {file_url}')
|
97 |
+
total_size = int(response.headers.get('content-length', 0))
|
98 |
+
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
|
99 |
+
progress_gradio = gr.Progress()
|
100 |
+
completed_size = 0
|
101 |
+
with open(file_path, 'wb') as file:
|
102 |
+
for data in response.iter_content(chunk_size=4096):
|
103 |
+
size = file.write(data)
|
104 |
+
progress_tqdm.update(size)
|
105 |
+
completed_size += size
|
106 |
+
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
|
107 |
+
progress_gradio(completed_size/total_size, desc=desc)
|
108 |
+
|
109 |
+
|
110 |
+
# loading and initializing the GGUF model
|
111 |
+
def load_llm_model(model_repo: str, model_file: str) -> Tuple[LLM_MODEL_DICT, str, str]:
|
112 |
+
llm_model = None
|
113 |
+
load_log = ''
|
114 |
+
support_system_role = False
|
115 |
+
|
116 |
+
if isinstance(model_file, list):
|
117 |
+
load_log += 'No model selected\n'
|
118 |
+
return llm_model, load_log
|
119 |
+
if '(' in model_file:
|
120 |
+
model_file = model_file.split('(')[0].rstrip()
|
121 |
+
|
122 |
+
progress = gr.Progress()
|
123 |
+
progress(0.3, desc='Step 1/2: Download the GGUF file')
|
124 |
+
model_path = LLM_MODELS_PATH / model_file
|
125 |
+
|
126 |
+
if model_path.is_file():
|
127 |
+
load_log += f'Model {model_file} already loaded, reinitializing\n'
|
128 |
+
else:
|
129 |
+
try:
|
130 |
+
gguf_url = f'https://huggingface.co/{model_repo}/resolve/main/{model_file}'
|
131 |
+
download_file(gguf_url, model_path)
|
132 |
+
load_log += f'Model {model_file} loaded\n'
|
133 |
+
except Exception as ex:
|
134 |
+
model_path = ''
|
135 |
+
load_log += f'Error loading model, error code:\n{ex}\n'
|
136 |
+
|
137 |
+
if model_path:
|
138 |
+
progress(0.7, desc='Step 2/2: Initialize the model')
|
139 |
+
try:
|
140 |
+
llm_model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=False)
|
141 |
+
support_system_role = 'System role not supported' not in llm_model.metadata['tokenizer.chat_template']
|
142 |
+
load_log += f'Model {model_file} initialized, max context size is {llm_model.n_ctx()} tokens\n'
|
143 |
+
except Exception as ex:
|
144 |
+
load_log += f'Error initializing model, error code:\n{ex}\n'
|
145 |
+
|
146 |
+
llm_model = {'model': llm_model}
|
147 |
+
return llm_model, support_system_role, load_log
|
148 |
+
|
149 |
+
|
150 |
+
# loading and initializing the embedding model
|
151 |
+
def load_embed_model(model_repo: str) -> Tuple[Dict[str, HuggingFaceEmbeddings], str]:
|
152 |
+
embed_model = None
|
153 |
+
load_log = ''
|
154 |
+
|
155 |
+
if isinstance(model_repo, list):
|
156 |
+
load_log = 'No model selected'
|
157 |
+
return embed_model, load_log
|
158 |
+
|
159 |
+
progress = gr.Progress()
|
160 |
+
folder_name = model_repo.replace('/', '_')
|
161 |
+
folder_path = EMBED_MODELS_PATH / folder_name
|
162 |
+
if Path(folder_path).is_dir():
|
163 |
+
load_log += f'Reinitializing model {model_repo} \n'
|
164 |
+
else:
|
165 |
+
progress(0.5, desc='Step 1/2: Download model repository')
|
166 |
+
snapshot_download(
|
167 |
+
repo_id=model_repo,
|
168 |
+
local_dir=folder_path,
|
169 |
+
ignore_patterns='*.h5',
|
170 |
+
)
|
171 |
+
load_log += f'Model {model_repo} loaded\n'
|
172 |
+
|
173 |
+
progress(0.7, desc='Шаг 2/2: Инициализация модели')
|
174 |
+
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
175 |
+
embed_model = HuggingFaceEmbeddings(
|
176 |
+
model_name=str(folder_path),
|
177 |
+
model_kwargs=model_kwargs,
|
178 |
+
# encode_kwargs={'normalize_embeddings': True},
|
179 |
+
)
|
180 |
+
load_log += f'Embeddings model {model_repo} initialized\n'
|
181 |
+
load_log += f'Please upload documents and initialize database again\n'
|
182 |
+
embed_model = {'embed_model': embed_model}
|
183 |
+
return embed_model, load_log
|
184 |
+
|
185 |
+
|
186 |
+
# adding a new HF repository new_model_repo to the current list of model_repos
|
187 |
+
def add_new_model_repo(new_model_repo: str, model_repos: List[str]) -> Tuple[gr.Dropdown, str]:
|
188 |
+
load_log = ''
|
189 |
+
repo = new_model_repo.strip()
|
190 |
+
if repo:
|
191 |
+
repo = repo.split('/')[-2:]
|
192 |
+
if len(repo) == 2:
|
193 |
+
repo = '/'.join(repo).split('?')[0]
|
194 |
+
if repo_exists(repo) and repo not in model_repos:
|
195 |
+
model_repos.insert(0, repo)
|
196 |
+
load_log += f'Model repository {repo} successfully added\n'
|
197 |
+
else:
|
198 |
+
load_log += 'Invalid HF repository name or model already in the list\n'
|
199 |
+
else:
|
200 |
+
load_log += 'Invalid link to HF repository\n'
|
201 |
+
else:
|
202 |
+
load_log += 'Empty line in HF repository field\n'
|
203 |
+
model_repo_dropdown = gr.Dropdown(choices=model_repos, value=model_repos[0])
|
204 |
+
return model_repo_dropdown, load_log
|
205 |
+
|
206 |
+
|
207 |
+
# get list of GGUF models from HF repository
|
208 |
+
def get_gguf_model_names(model_repo: str) -> gr.Dropdown:
|
209 |
+
repo_files = list(list_repo_tree(model_repo))
|
210 |
+
repo_files = [file for file in repo_files if file.path.endswith('.gguf')]
|
211 |
+
model_paths = [f'{file.path} ({file.size / 1000 ** 3:.2f}G)' for file in repo_files]
|
212 |
+
model_paths_dropdown = gr.Dropdown(
|
213 |
+
choices=model_paths,
|
214 |
+
value=model_paths[0],
|
215 |
+
label='GGUF model file',
|
216 |
+
)
|
217 |
+
return model_paths_dropdown
|
218 |
+
|
219 |
+
|
220 |
+
# delete model files and folders to clear space except for the current model gguf_filename
|
221 |
+
def clear_llm_folder(gguf_filename: str) -> None:
|
222 |
+
if gguf_filename is None:
|
223 |
+
gr.Info(f'The name of the model file that does not need to be deleted is not selected.')
|
224 |
+
return
|
225 |
+
if '(' in gguf_filename:
|
226 |
+
gguf_filename = gguf_filename.split('(')[0].rstrip()
|
227 |
+
for path in LLM_MODELS_PATH.iterdir():
|
228 |
+
if path.name == gguf_filename:
|
229 |
+
continue
|
230 |
+
if path.is_file():
|
231 |
+
path.unlink(missing_ok=True)
|
232 |
+
gr.Info(f'All files removed from directory {LLM_MODELS_PATH} except {gguf_filename}')
|
233 |
+
|
234 |
+
|
235 |
+
# delete model folders to clear space except for the current model model_folder_name
|
236 |
+
def clear_embed_folder(model_repo: str) -> None:
|
237 |
+
if model_repo is None:
|
238 |
+
gr.Info(f'The name of the model that does not need to be deleted is not selected.')
|
239 |
+
return
|
240 |
+
model_folder_name = model_repo.replace('/', '_')
|
241 |
+
for path in EMBED_MODELS_PATH.iterdir():
|
242 |
+
if path.name == model_folder_name:
|
243 |
+
continue
|
244 |
+
if path.is_dir():
|
245 |
+
rmtree(path, ignore_errors=True)
|
246 |
+
gr.Info(f'All directories have been removed from the {EMBED_MODELS_PATH} directory except {model_folder_name}')
|
247 |
+
|
248 |
+
|
249 |
+
# ------------------------ YOUTUBE ------------------------
|
250 |
+
|
251 |
+
# function to check availability of subtitles, if manual or automatic are available - returns True and logs
|
252 |
+
# if subtitles are not available - returns False and logs
|
253 |
+
def check_subtitles_available(yt_video_link: str, target_lang: str) -> Tuple[bool, str]:
|
254 |
+
video_id = yt_video_link.split('watch?v=')[-1].split('&')[0]
|
255 |
+
load_log = ''
|
256 |
+
available = True
|
257 |
+
try:
|
258 |
+
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
259 |
+
try:
|
260 |
+
transcript = transcript_list.find_transcript([target_lang])
|
261 |
+
if transcript.is_generated:
|
262 |
+
load_log += f'Automatic subtitles will be loaded, manual ones are not available for video {yt_video_link}\n'
|
263 |
+
else:
|
264 |
+
load_log += f'Manual subtitles will be downloaded for the video {yt_video_link}\n'
|
265 |
+
except NoTranscriptFound:
|
266 |
+
load_log += f'Subtitle language {target_lang} is not available for video {yt_video_link}\n'
|
267 |
+
available = False
|
268 |
+
except TranscriptsDisabled:
|
269 |
+
load_log += f'No subtitles for video {yt_video_link}\n'
|
270 |
+
available = False
|
271 |
+
return available, load_log
|
272 |
+
|
273 |
+
|
274 |
+
# ------------- UPLOADING DOCUMENTS FOR RAG ------------------------
|
275 |
+
|
276 |
+
# extract documents (in langchain Documents format) from downloaded files
|
277 |
+
def load_documents_from_files(upload_files: List[str]) -> Tuple[List[Document], str]:
|
278 |
+
load_log = ''
|
279 |
+
documents = []
|
280 |
+
for upload_file in upload_files:
|
281 |
+
file_extension = f".{upload_file.split('.')[-1]}"
|
282 |
+
if file_extension in LOADER_CLASSES:
|
283 |
+
loader_class = LOADER_CLASSES[file_extension]
|
284 |
+
loader_kwargs = {}
|
285 |
+
if file_extension == '.csv':
|
286 |
+
with open(upload_file) as csvfile:
|
287 |
+
delimiter = csv.Sniffer().sniff(csvfile.read(4096)).delimiter
|
288 |
+
loader_kwargs = {'csv_args': {'delimiter': delimiter}}
|
289 |
+
try:
|
290 |
+
load_documents = loader_class(upload_file, **loader_kwargs).load()
|
291 |
+
documents.extend(load_documents)
|
292 |
+
except Exception as ex:
|
293 |
+
load_log += f'Error uploading file {upload_file}\n'
|
294 |
+
load_log += f'Error code: {ex}\n'
|
295 |
+
continue
|
296 |
+
else:
|
297 |
+
load_log += f'Unsupported file format {upload_file}\n'
|
298 |
+
continue
|
299 |
+
return documents, load_log
|
300 |
+
|
301 |
+
|
302 |
+
# extracting documents (in langchain Documents format) from WEB links
|
303 |
+
def load_documents_from_links(
|
304 |
+
web_links: str,
|
305 |
+
subtitles_lang: str,
|
306 |
+
) -> Tuple[List[Document], str]:
|
307 |
+
|
308 |
+
load_log = ''
|
309 |
+
documents = []
|
310 |
+
loader_class_kwargs = {}
|
311 |
+
web_links = [web_link.strip() for web_link in web_links.split('\n') if web_link.strip()]
|
312 |
+
for web_link in web_links:
|
313 |
+
if 'youtube.com' in web_link:
|
314 |
+
available, log = check_subtitles_available(web_link, subtitles_lang)
|
315 |
+
load_log += log
|
316 |
+
if not available:
|
317 |
+
continue
|
318 |
+
loader_class = LOADER_CLASSES['youtube'].from_youtube_url
|
319 |
+
loader_class_kwargs = {'language': subtitles_lang}
|
320 |
+
else:
|
321 |
+
loader_class = LOADER_CLASSES['web']
|
322 |
+
|
323 |
+
try:
|
324 |
+
if requests.get(web_link).status_code != 200:
|
325 |
+
load_log += f'Ссылка недоступна для Python requests: {web_link}\n'
|
326 |
+
continue
|
327 |
+
load_documents = loader_class(web_link, **loader_class_kwargs).load()
|
328 |
+
if len(load_documents) == 0:
|
329 |
+
load_log += f'No text chunks were found at the link: {web_link}\n'
|
330 |
+
continue
|
331 |
+
documents.extend(load_documents)
|
332 |
+
except MissingSchema:
|
333 |
+
load_log += f'Invalid link: {web_link}\n'
|
334 |
+
continue
|
335 |
+
except Exception as ex:
|
336 |
+
load_log += f'Error loading data by web loader at link: {web_link}\n'
|
337 |
+
load_log += f'Error code: {ex}\n'
|
338 |
+
continue
|
339 |
+
return documents, load_log
|
340 |
+
|
341 |
+
|
342 |
+
# uploading files and generating documents and databases
|
343 |
+
def load_documents_and_create_db(
|
344 |
+
upload_files: Optional[List[str]],
|
345 |
+
web_links: str,
|
346 |
+
subtitles_lang: str,
|
347 |
+
chunk_size: int,
|
348 |
+
chunk_overlap: int,
|
349 |
+
embed_model_dict: EMBED_MODEL_DICT,
|
350 |
+
) -> Tuple[List[Document], Optional[VectorStore], str]:
|
351 |
+
|
352 |
+
load_log = ''
|
353 |
+
all_documents = []
|
354 |
+
db = None
|
355 |
+
progress = gr.Progress()
|
356 |
+
|
357 |
+
embed_model = embed_model_dict.get('embed_model')
|
358 |
+
if embed_model is None:
|
359 |
+
load_log += 'Embeddings model not initialized, DB cannot be created'
|
360 |
+
return all_documents, db, load_log
|
361 |
+
|
362 |
+
if upload_files is None and not web_links:
|
363 |
+
load_log = 'No files or links selected'
|
364 |
+
return all_documents, db, load_log
|
365 |
+
|
366 |
+
if upload_files is not None:
|
367 |
+
progress(0.3, desc='Step 1/2: Upload documents from files')
|
368 |
+
docs, log = load_documents_from_files(upload_files)
|
369 |
+
all_documents.extend(docs)
|
370 |
+
load_log += log
|
371 |
+
|
372 |
+
if web_links:
|
373 |
+
progress(0.3 if upload_files is None else 0.5, desc='Step 1/2: Upload documents via links')
|
374 |
+
docs, log = load_documents_from_links(web_links, subtitles_lang)
|
375 |
+
all_documents.extend(docs)
|
376 |
+
load_log += log
|
377 |
+
|
378 |
+
if len(all_documents) == 0:
|
379 |
+
load_log += 'Download was interrupted because no documents were extracted\n'
|
380 |
+
load_log += 'RAG mode cannot be activated'
|
381 |
+
return all_documents, db, load_log
|
382 |
+
|
383 |
+
load_log += f'Documents loaded: {len(all_documents)}\n'
|
384 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
385 |
+
chunk_size=chunk_size,
|
386 |
+
chunk_overlap=chunk_overlap,
|
387 |
+
)
|
388 |
+
documents = text_splitter.split_documents(all_documents)
|
389 |
+
documents = clear_documents(documents)
|
390 |
+
load_log += f'Documents are divided, number of text chunks: {len(documents)}\n'
|
391 |
+
|
392 |
+
progress(0.7, desc='Step 2/2: Initialize DB')
|
393 |
+
db = FAISS.from_documents(documents=documents, embedding=embed_model)
|
394 |
+
load_log += 'DB is initialized, RAG mode is activated and can be activated in the Chatbot tab'
|
395 |
+
return documents, db, load_log
|
396 |
+
|
397 |
+
|
398 |
+
# ------------------ ФУНКЦИИ ЧАТ БОТА ------------------------
|
399 |
+
|
400 |
+
# adding a user message to the chat bot window
|
401 |
+
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
|
402 |
+
chatbot.append([user_message, None])
|
403 |
+
return '', chatbot
|
404 |
+
|
405 |
+
|
406 |
+
# formatting prompt with adding context if DB is available and RAG mode is enabled
|
407 |
+
def update_user_message_with_context(
|
408 |
+
chatbot: CHAT_HISTORY,
|
409 |
+
rag_mode: bool,
|
410 |
+
db: VectorStore,
|
411 |
+
k: Union[int, str],
|
412 |
+
score_threshold: float,
|
413 |
+
) -> Tuple[str, CHAT_HISTORY]:
|
414 |
+
|
415 |
+
user_message = chatbot[-1][0]
|
416 |
+
user_message_with_context = ''
|
417 |
+
if db is not None and rag_mode and user_message.strip():
|
418 |
+
if k == 'all':
|
419 |
+
k = len(db.docstore._dict)
|
420 |
+
docs_and_distances = db.similarity_search_with_relevance_scores(
|
421 |
+
user_message,
|
422 |
+
k=k,
|
423 |
+
score_threshold=score_threshold,
|
424 |
+
)
|
425 |
+
if len(docs_and_distances) > 0:
|
426 |
+
retriever_context = '\n\n'.join([doc[0].page_content for doc in docs_and_distances])
|
427 |
+
user_message_with_context = CONTEXT_TEMPLATE.format(
|
428 |
+
user_message=user_message,
|
429 |
+
context=retriever_context,
|
430 |
+
)
|
431 |
+
return user_message_with_context
|
432 |
+
|
433 |
+
|
434 |
+
# model response generation
|
435 |
+
def get_llm_response(
|
436 |
+
chatbot: CHAT_HISTORY,
|
437 |
+
llm_model_dict: LLM_MODEL_DICT,
|
438 |
+
user_message_with_context: str,
|
439 |
+
rag_mode: bool,
|
440 |
+
system_prompt: str,
|
441 |
+
support_system_role: bool,
|
442 |
+
history_len: int,
|
443 |
+
do_sample: bool,
|
444 |
+
*generate_args,
|
445 |
+
) -> CHAT_HISTORY:
|
446 |
+
|
447 |
+
user_message = chatbot[-1][0]
|
448 |
+
if not user_message.strip():
|
449 |
+
yield chatbot[:-1]
|
450 |
+
return None
|
451 |
+
|
452 |
+
if rag_mode:
|
453 |
+
if user_message_with_context:
|
454 |
+
user_message = user_message_with_context
|
455 |
+
else:
|
456 |
+
gr.Info((
|
457 |
+
f'No documents relevant to the query were found, generation in RAG mode is not possible.\n'
|
458 |
+
f'Try reducing searh_score_threshold or disable RAG mode for normal generation'
|
459 |
+
))
|
460 |
+
yield chatbot[:-1]
|
461 |
+
return None
|
462 |
+
|
463 |
+
llm_model = llm_model_dict.get('model')
|
464 |
+
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
|
465 |
+
gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
|
466 |
+
if not do_sample:
|
467 |
+
gen_kwargs['top_p'] = 0.0
|
468 |
+
gen_kwargs['top_k'] = 1
|
469 |
+
gen_kwargs['repeat_penalty'] = 1.0
|
470 |
+
|
471 |
+
messages = []
|
472 |
+
if support_system_role and system_prompt:
|
473 |
+
messages.append({'role': 'system', 'content': system_prompt})
|
474 |
+
|
475 |
+
if history_len != 0:
|
476 |
+
for user_msg, bot_msg in chatbot[:-1][-history_len:]:
|
477 |
+
messages.append({'role': 'user', 'content': user_msg})
|
478 |
+
messages.append({'role': 'assistant', 'content': bot_msg})
|
479 |
+
|
480 |
+
messages.append({'role': 'user', 'content': user_message})
|
481 |
+
stream_response = llm_model.create_chat_completion(
|
482 |
+
messages=messages,
|
483 |
+
stream=True,
|
484 |
+
**gen_kwargs,
|
485 |
+
)
|
486 |
+
try:
|
487 |
+
chatbot[-1][1] = ''
|
488 |
+
for chunk in stream_response:
|
489 |
+
token = chunk['choices'][0]['delta'].get('content')
|
490 |
+
if token is not None:
|
491 |
+
chatbot[-1][1] += token
|
492 |
+
yield chatbot
|
493 |
+
except Exception as ex:
|
494 |
+
gr.Info(f'Error generating response, error code: {ex}')
|
495 |
+
yield chatbot
|