Spaces:
Sleeping
Sleeping
initial
Browse files
app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import requests
|
9 |
+
import logging
|
10 |
+
|
11 |
+
from aiohttp import ClientSession
|
12 |
+
from langchain.text_splitter import SpacyTextSplitter
|
13 |
+
from datasets import Dataset, load_dataset
|
14 |
+
from tqdm import tqdm
|
15 |
+
from tqdm.asyncio import tqdm_asyncio
|
16 |
+
|
17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
+
SEMAPHORE_BOUND = os.getenv("SEMAPHORE_BOUND", "5")
|
19 |
+
|
20 |
+
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Chunker:
|
26 |
+
def __init__(self, strategy, split_seq=".", chunk_len=512):
|
27 |
+
self.split_seq = split_seq
|
28 |
+
self.chunk_len = chunk_len
|
29 |
+
if strategy == "spacy":
|
30 |
+
self.split = SpacyTextSplitter().split_text
|
31 |
+
if strategy == "sequence":
|
32 |
+
self.split = self.seq_splitter
|
33 |
+
if strategy == "constant":
|
34 |
+
self.split = self.const_splitter
|
35 |
+
|
36 |
+
def seq_splitter(self, text):
|
37 |
+
return text.split(self.split_seq)
|
38 |
+
|
39 |
+
def const_splitter(self, text):
|
40 |
+
return [
|
41 |
+
text[i * self.chunk_len:(i + 1) * self.chunk_len]
|
42 |
+
for i in range(int(np.ceil(len(text) / self.chunk_len)))
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
def generator(input_ds, input_text_col, chunker):
|
47 |
+
for i in tqdm(range(len(input_ds))):
|
48 |
+
chunks = chunker.split(input_ds[i][input_text_col])
|
49 |
+
for chunk in chunks:
|
50 |
+
if chunk:
|
51 |
+
yield {input_text_col: chunk}
|
52 |
+
|
53 |
+
|
54 |
+
def chunk(input_ds, input_splits, input_text_col, output_ds, strategy, split_seq, chunk_len, private):
|
55 |
+
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
56 |
+
input_ds = load_dataset(input_ds, split="+".join(input_splits))
|
57 |
+
chunker = Chunker(strategy, split_seq, chunk_len)
|
58 |
+
|
59 |
+
gen_kwargs = {
|
60 |
+
"input_ds": input_ds,
|
61 |
+
"input_text_col": input_text_col,
|
62 |
+
"chunker": chunker
|
63 |
+
}
|
64 |
+
dataset = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
|
65 |
+
dataset.push_to_hub(
|
66 |
+
output_ds,
|
67 |
+
private=private,
|
68 |
+
token=HF_TOKEN
|
69 |
+
)
|
70 |
+
|
71 |
+
logger.info("Done chunking")
|
72 |
+
|
73 |
+
|
74 |
+
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
|
75 |
+
async with semaphore:
|
76 |
+
payload = {
|
77 |
+
"inputs": sentence,
|
78 |
+
"truncate": True
|
79 |
+
}
|
80 |
+
|
81 |
+
async with ClientSession(
|
82 |
+
headers={
|
83 |
+
"Content-Type": "application/json",
|
84 |
+
"Authorization": f"Bearer {HF_TOKEN}"
|
85 |
+
}
|
86 |
+
) as session:
|
87 |
+
async with session.post(tei_url, json=payload) as resp:
|
88 |
+
if resp.status != 200:
|
89 |
+
raise RuntimeError(await resp.text())
|
90 |
+
result = await resp.json()
|
91 |
+
|
92 |
+
tmp_file.write(
|
93 |
+
json.dumps({"vector": result[0], embed_in_text_col: sentence}) + "\n"
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
async def embed_ds(input_ds, tei_url, embed_in_text_col, temp_file):
|
98 |
+
semaphore = asyncio.BoundedSemaphore(int(SEMAPHORE_BOUND))
|
99 |
+
jobs = [
|
100 |
+
asyncio.create_task(embed_sent(row[embed_in_text_col], embed_in_text_col, semaphore, tei_url, temp_file))
|
101 |
+
for row in input_ds if row[embed_in_text_col].strip()
|
102 |
+
]
|
103 |
+
logger.info(f"num chunks to embed: {len(jobs)}")
|
104 |
+
|
105 |
+
tic = time.time()
|
106 |
+
await tqdm_asyncio.gather(*jobs)
|
107 |
+
logger.info(f"embed time: {time.time() - tic}")
|
108 |
+
|
109 |
+
|
110 |
+
def wake_up_endpoint(url):
|
111 |
+
n_loop = 0
|
112 |
+
while requests.get(
|
113 |
+
url=url,
|
114 |
+
headers={"Authorization": f"Bearer {HF_TOKEN}"}
|
115 |
+
).status_code != 200:
|
116 |
+
time.sleep(2)
|
117 |
+
n_loop += 1
|
118 |
+
if n_loop > 30:
|
119 |
+
raise TimeoutError("TEI endpoint is unavailable")
|
120 |
+
logger.info("TEI endpoint is up")
|
121 |
+
|
122 |
+
|
123 |
+
def run_embed(input_ds, input_splits, embed_in_text_col, output_ds, tei_url, private):
|
124 |
+
wake_up_endpoint(tei_url)
|
125 |
+
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
126 |
+
input_ds = load_dataset(input_ds, split="+".join(input_splits))
|
127 |
+
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
|
128 |
+
asyncio.run(embed_ds(input_ds, tei_url, embed_in_text_col, temp_file))
|
129 |
+
|
130 |
+
dataset = Dataset.from_json(temp_file.name)
|
131 |
+
dataset.push_to_hub(
|
132 |
+
output_ds,
|
133 |
+
private=private,
|
134 |
+
token=HF_TOKEN
|
135 |
+
)
|
136 |
+
|
137 |
+
logger.info("Done embedding")
|
138 |
+
|
139 |
+
|
140 |
+
def change_dropdown(choice):
|
141 |
+
if choice == "spacy" or choice == "sequence":
|
142 |
+
return [
|
143 |
+
gr.Textbox(visible=True),
|
144 |
+
gr.Textbox(visible=False)
|
145 |
+
]
|
146 |
+
else:
|
147 |
+
return [
|
148 |
+
gr.Textbox(visible=False),
|
149 |
+
gr.Textbox(visible=True)
|
150 |
+
]
|
151 |
+
|
152 |
+
|
153 |
+
with gr.Blocks() as demo:
|
154 |
+
gr.Markdown(
|
155 |
+
"""
|
156 |
+
## Chunk your dataset before embedding
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
with gr.Tab("Chunk"):
|
160 |
+
chunk_in_ds = gr.Textbox(lines=1, label="Input dataset name")
|
161 |
+
with gr.Row():
|
162 |
+
chunk_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
163 |
+
chunk_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
164 |
+
with gr.Row():
|
165 |
+
chunk_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
|
166 |
+
chunk_private = gr.Checkbox(label="Make chunked dataset private")
|
167 |
+
with gr.Row():
|
168 |
+
dropdown = gr.Dropdown(
|
169 |
+
["spacy", "sequence", "constant"], label="Chunking strategy",
|
170 |
+
info="'spacy' uses a Spacy tokenizer, 'sequence' splits texts by a chosen sequence, "
|
171 |
+
"'constant' makes chunks of the constant size",
|
172 |
+
scale=2
|
173 |
+
)
|
174 |
+
split_seq = gr.Textbox(
|
175 |
+
lines=1,
|
176 |
+
interactive=True,
|
177 |
+
visible=False,
|
178 |
+
label="Sequence",
|
179 |
+
info="A text sequence to split on",
|
180 |
+
placeholder="\n\n"
|
181 |
+
)
|
182 |
+
chunk_len = gr.Textbox(
|
183 |
+
lines=1,
|
184 |
+
interactive=True,
|
185 |
+
visible=False,
|
186 |
+
label="Length",
|
187 |
+
info="The length of chunks to split into",
|
188 |
+
placeholder="512"
|
189 |
+
)
|
190 |
+
dropdown.change(fn=change_dropdown, inputs=dropdown, outputs=[split_seq, chunk_len])
|
191 |
+
with gr.Row():
|
192 |
+
gr.ClearButton(
|
193 |
+
components=[
|
194 |
+
chunk_in_ds, chunk_in_splits, chunk_in_text_col, chunk_out_ds,
|
195 |
+
dropdown, split_seq, chunk_len, chunk_private
|
196 |
+
]
|
197 |
+
)
|
198 |
+
chunk_btn = gr.Button("Chunk")
|
199 |
+
chunk_btn.click(
|
200 |
+
fn=chunk,
|
201 |
+
inputs=[chunk_in_ds, chunk_in_splits, chunk_in_text_col, chunk_out_ds,
|
202 |
+
dropdown, split_seq, chunk_len, chunk_private]
|
203 |
+
)
|
204 |
+
|
205 |
+
with gr.Tab("Embed"):
|
206 |
+
embed_in_ds = gr.Textbox(lines=1, label="Input dataset name")
|
207 |
+
with gr.Row():
|
208 |
+
embed_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
209 |
+
embed_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
210 |
+
with gr.Row():
|
211 |
+
embed_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
|
212 |
+
embed_private = gr.Checkbox(label="Make embedded dataset private")
|
213 |
+
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
|
214 |
+
with gr.Row():
|
215 |
+
gr.ClearButton(
|
216 |
+
components=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
217 |
+
)
|
218 |
+
embed_btn = gr.Button("Run embed")
|
219 |
+
embed_btn.click(
|
220 |
+
fn=run_embed,
|
221 |
+
inputs=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
demo.launch(debug=True)
|