File size: 1,925 Bytes
c2d58b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import re
import time
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from config import settings
from functools import lru_cache
import os


@lru_cache(maxsize=1)
def load_model():
    processor = DonutProcessor.from_pretrained(settings.processor)
    model = VisionEncoderDecoderModel.from_pretrained(settings.model)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)

    return processor, model, device


def process_document_donut(image):
    worker_pid = os.getpid()
    print(f"Handling inference request with worker PID: {worker_pid}")

    start_time = time.time()

    processor, model, device = load_model()

    # prepare encoder inputs
    pixel_values = processor(image, return_tensors="pt").pixel_values

    # prepare decoder inputs
    task_prompt = "<s_cord-v2>"
    decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids

    # generate answer
    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    # postprocess
    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token

    end_time = time.time()
    processing_time = end_time - start_time

    print(f"Inference done, worker PID: {worker_pid}")

    return processor.token2json(sequence), processing_time