Spaces:
Running
Running
File size: 9,540 Bytes
75e3a5e d18f074 457dd9b 33a8da6 cbd363e 33a8da6 89df602 fc98f8c d18f074 89df602 7187257 992a99c d18f074 7187257 89df602 33a8da6 89df602 c8b4b1d 6bc4f7f a79f40e d3e5f59 89df602 cbd363e 89df602 a79f40e 89df602 4bafb5e 6cbfe79 4bafb5e 33a8da6 89df602 6bc4f7f fc98f8c d18f074 fc98f8c cbd363e 89df602 cbb0dad b5d38bf 33a8da6 4bafb5e 33a8da6 4bafb5e 33a8da6 89df602 b5d38bf 6ca6cf4 c8b4b1d 89df602 b5d38bf 89df602 fc98f8c 457dd9b 2b20cb7 89df602 4bafb5e 89df602 e276a90 c8b4b1d fc98f8c 2b20cb7 1cf330c e276a90 c8b4b1d 1cf330c 2b20cb7 c8b4b1d e276a90 fc98f8c 1cf330c fc98f8c 1cf330c 89df602 2b20cb7 fc98f8c 2b20cb7 0d9d0ee 6bc4f7f 0d9d0ee 6bc4f7f fc98f8c 33a8da6 d3e5f59 0d9d0ee d18f074 89df602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# -*- coding: UTF-8 -*-
import gradio as gr
import torch
import os
import random
import time
import math
import spaces
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import export_to_video, export_to_gif
from PIL import Image
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
)
fps25Pipe.to("cuda")
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
fps14Pipe.to("cuda")
max_64_bit_int = 2**63 - 1
def animate(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
noise_aug_strength: float = 0.1,
decoding_t: int = 3,
video_format: str = "mp4",
frame_format: str = "webp",
version: str = "auto",
output_folder: str = "outputs",
):
start = time.time()
if image.mode == "RGBA":
image = image.convert("RGB")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
if version == "auto":
if 14 < fps_id:
version = "svdxt"
else:
version = "svd"
frames = animate_on_gpu(
image,
seed,
motion_bucket_id,
fps_id,
noise_aug_strength,
decoding_t,
version
)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*." + video_format)))
result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format)
if video_format == "gif":
video_path = None
gif_path = result_path
export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id)
else:
video_path = result_path
gif_path = None
export_to_video(frames, video_path, fps=fps_id)
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \
"The video has been generated in " + \
((str(hours) + " h, ") if hours != 0 else "") + \
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
str(secondes) + " sec."
return gr.update(value=video_path, format=video_format if video_format != "gif" else None, visible=video_format != "gif"), gr.update(value=gif_path, visible=video_format == "gif"), gr.update(value=result_path, visible=True), gr.update(label="Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible=True), seed, gr.update(value = information, visible = True), gr.update(visible=True)
@spaces.GPU(duration=120)
def animate_on_gpu(
image: Image,
seed: Optional[int] = 42,
motion_bucket_id: int = 127,
fps_id: int = 6,
noise_aug_strength: float = 0.1,
decoding_t: int = 3,
version: str = "svdxt"
):
generator = torch.manual_seed(seed)
if version == "svdxt":
return fps25Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
else:
return fps14Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
def resize_image(image, output_size=(1024, 576)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Do not touch the image if the size is good
if image.width == output_size[0] and image.height == output_size[1]:
return image
# Resize if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
return resized_image.crop((left, top, right, bottom))
def reset():
return [
None,
random.randint(0, max_64_bit_int),
True,
127,
6,
0.1,
3,
"mp4",
"webp",
"auto"
]
with gr.Blocks() as demo:
gr.HTML("""
<h1><center>Image-to-Video</center></h1>
<big><center>Animate your images into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big>
<br/>
<p>
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence.
No prompt or camera control is handled here. To control motions, rather use <i><a href="https://huggingface.co./spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>.
</p>
""")
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
with gr.Accordion("Advanced options", open=False):
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
video_format = gr.Radio([["*.mp4", "mp4"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True)
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
generate_btn = gr.Button(value="π Animate", variant="primary")
reset_btn = gr.Button(value="π§Ή Reinit page", variant="stop", elem_id="reset_button", visible = False)
with gr.Column():
video_output = gr.Video(label="Generated video", autoplay=True)
gif_output = gr.Image(label="Generated video", format="gif", visible=False)
download_button = gr.DownloadButton(label="πΎ Download video", visible=False)
information_msg = gr.HTML(visible=False)
gallery = gr.Gallery(label="Generated frames", visible=False)
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
generate_btn.click(fn=animate, inputs=[
image,
seed,
randomize_seed,
motion_bucket_id,
fps_id,
noise_aug_strength,
decoding_t,
video_format,
frame_format,
version
], outputs=[
video_output,
gif_output,
download_button,
gallery,
seed,
information_msg,
reset_btn
], api_name="video")
reset_btn.click(fn = reset, inputs = [], outputs = [
image,
seed,
randomize_seed,
motion_bucket_id,
fps_id,
noise_aug_strength,
decoding_t,
video_format,
frame_format,
version
], queue = False, show_progress = False)
gr.Examples(
examples=[
["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto"],
["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto"],
["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto"]
],
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version],
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
fn=animate,
run_on_click=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(share=True, show_api=False) |