Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel, EulerAncestralDiscreteScheduler | |
from diffusers.utils import export_to_gif, load_image | |
from realesrgan import RealESRGAN | |
from PIL import Image | |
import cv2 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def enhance_quality(image_path): | |
model = RealESRGAN(device, scale=4) | |
model.load_weights('RealESRGAN_x4.pth', download=True) | |
img = Image.open(image_path) | |
sr_image = model.predict(img) | |
sr_image.save('enhanced_' + image_path) | |
return 'enhanced_' + image_path | |
def denoise_image(image_path): | |
image = cv2.imread(image_path) | |
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) | |
denoised_path = 'denoised_' + image_path | |
cv2.imwrite(denoised_path, denoised_image) | |
return denoised_path | |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale): | |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device) | |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device) | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device) | |
pipe = AnimateDiffPipeline.from_pretrained( | |
"SG161222/Realistic_Vision_V6.0_B1_noVAE", | |
motion_adapter=motion_adapter, | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
).to(device) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True) | |
image_files = [ | |
"https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png", | |
"https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png", | |
"https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png" | |
] | |
conditioning_frames = [load_image(img_file) for img_file in image_files] | |
conditioning_frame_indices = eval(conditioning_frame_indices) | |
controlnet_conditioning_scale = float(controlnet_conditioning_scale) | |
video = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, | |
conditioning_frames=conditioning_frames, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
controlnet_frame_indices=conditioning_frame_indices, | |
generator=torch.Generator().manual_seed(1337), | |
).frames[0] | |
export_to_gif(video, "output.gif") | |
enhanced_gif = enhance_quality("output.gif") | |
denoised_gif = denoise_image(enhanced_gif) | |
return denoised_gif | |
def generate_simple_video(prompt): | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device) | |
pipe = AnimateDiffPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16).to(device) | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_schedule="linear", | |
beta_start=0.00085, | |
beta_end=0.012, | |
) | |
pipe.enable_free_noise() | |
pipe.vae.enable_slicing() | |
pipe.enable_model_cpu_offload() | |
frames = pipe( | |
prompt, | |
num_frames=128, # Increased for smoother video | |
num_inference_steps=100, # Increased for higher quality | |
guidance_scale=15.0, # Increased for stronger guidance | |
decode_chunk_size=1, | |
).frames[0] | |
export_to_gif(frames, "simple_output.gif") | |
enhanced_gif = enhance_quality("simple_output.gif") | |
denoised_gif = denoise_image(enhanced_gif) | |
return denoised_gif | |
demo1 = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt", value="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"), | |
gr.Textbox(label="Negative Prompt", value="low quality, worst quality, letterboxed"), | |
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=100), # Increased default value | |
gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"), | |
gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0) | |
], | |
outputs=gr.Image(label="Generated Video"), | |
title="Generate Video with AnimateDiffSparseControlNetPipeline", | |
description="Generate a video using the AnimateDiffSparseControlNetPipeline." | |
) | |
demo2 = gr.Interface( | |
fn=generate_simple_video, | |
inputs=gr.Textbox(label="Prompt", value="An astronaut riding a horse on Mars."), | |
outputs=gr.Image(label="Generated Simple Video"), | |
title="Generate Simple Video with AnimateDiff", | |
description="Generate a simple video using the AnimateDiffPipeline." | |
) | |
demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"]) | |
demo.launch() | |
#demo.launch(server_name="0.0.0.0", server_port=7910) | |