File size: 17,045 Bytes
6c02161
b2d8a8c
15059e3
b0cba66
d305eb7
 
c7840c9
 
51043fd
 
b2d8a8c
6b78ccb
018f313
6b78ccb
 
 
2936f7d
6b78ccb
98d025d
15059e3
018f313
d305eb7
c7840c9
d305eb7
 
c022c1a
472d32d
c022c1a
 
 
9df60ba
c022c1a
15059e3
018f313
c022c1a
9df60ba
d305eb7
472d32d
 
 
 
 
 
 
22e7225
018f313
 
 
d305eb7
 
 
018f313
 
6b78ccb
c7840c9
 
 
d305eb7
c7840c9
 
01bd804
649509e
c7840c9
 
018f313
 
 
dbb603e
0be5f10
c7840c9
ac7355c
d305eb7
0be5f10
649509e
d9f5774
2936f7d
0d14459
 
a96918a
0be5f10
d21cf89
018f313
 
fa7e403
a96918a
d305eb7
018f313
c7840c9
018f313
 
c7840c9
 
858dd79
0be5f10
 
d305eb7
0be5f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858dd79
7b1113e
a96918a
018f313
 
ce8b1dc
4fb5529
018f313
 
 
 
 
 
a96918a
0be5f10
d305eb7
71f5120
 
0be5f10
c7840c9
4c600ac
71f5120
018f313
71f5120
d305eb7
 
 
71f5120
d305eb7
 
 
 
71f5120
d305eb7
 
 
 
 
 
 
71f5120
27c2637
 
ab92feb
c2ab7de
 
 
71f5120
 
 
 
cc4d053
5a7b9de
71f5120
 
d305eb7
5a7b9de
d305eb7
 
 
 
 
 
 
 
71f5120
 
 
 
 
 
 
d305eb7
 
 
 
5e9d470
d305eb7
 
 
 
 
71f5120
d305eb7
 
71f5120
 
d305eb7
 
 
 
 
 
71f5120
d305eb7
71f5120
 
 
d305eb7
 
 
 
 
d9f5774
d305eb7
 
 
 
 
71f5120
5a7b9de
71f5120
5a7b9de
71f5120
 
 
d305eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310cc12
0be5f10
649509e
 
c7840c9
018f313
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
c7840c9
 
4c600ac
dce5b4e
649509e
b6479c7
71f5120
649509e
24d1064
c7840c9
24d1064
 
4c600ac
 
d305eb7
4c600ac
 
 
 
 
 
 
 
 
 
 
 
c7840c9
d305eb7
649509e
15059e3
a8a1233
 
 
 
 
 
 
31a0286
 
a8a1233
 
 
 
 
 
649509e
3fe10eb
649509e
fd82b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
15059e3
 
85b4489
15059e3
5730add
ce8b1dc
649509e
c7840c9
d305eb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import sys
import uuid
import re

print("Installing flash-attn...")
# Install flash attention
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True
)

from huggingface_hub import snapshot_download

# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'

# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
    os.mkdir(folder_path)
    print(f"Folder created at: {folder_path}")
else:
    print(f"Folder already exists at: {folder_path}")

snapshot_download(
    repo_id="m-a-p/xcodec_mini_infer",
    local_dir="./xcodec_mini_infer"
)

# Change to the "inference" directory
inference_dir = "."
try:
    os.chdir(inference_dir)
    print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
    print(f"Directory not found: {inference_dir}")
    exit(1)

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))

# don't change above code

import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf

from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream

device = "cuda:0"

# Load model and tokenizer outside the generation function (load once)
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
    "m-a-p/YuE-s1-7B-anneal-en-icl", # "m-a-p/YuE-s1-7B-anneal-en-cot", 
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
).to(device)
model.eval()
print("Model loaded.")

basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'

mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")

codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
print("Codec model loaded.")


class BlockTokenRangeProcessor(LogitsProcessor):
    def __init__(self, start_id, end_id):
        self.blocked_token_ids = list(range(start_id, end_id))

    def __call__(self, input_ids, scores):
        scores[:, self.blocked_token_ids] = -float("inf")
        return scores

def load_audio_mono(filepath, sampling_rate=16000):
    audio, sr = torchaudio.load(filepath)
    # Convert to mono
    audio = torch.mean(audio, dim=0, keepdim=True)
    # Resample if needed
    if sr != sampling_rate:
        resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
        audio = resampler(audio)
    return audio

def split_lyrics(lyrics: str):
    pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
    segments = re.findall(pattern, lyrics, re.DOTALL)
    structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
    return structured_lyrics

@spaces.GPU(duration=175)
def generate_music(
        genre_txt=None,
        lyrics_txt=None,
        run_n_segments=2,
        max_new_tokens=22,
        use_audio_prompt=False,
        audio_prompt_path="",
        prompt_start_time=0.0,
        prompt_end_time=30.0,
        cuda_idx=0,
        rescale=False,
):
    """
    Generates music based on given genre and lyrics, optionally using an audio prompt.
    This function orchestrates the music generation process, including prompt formatting,
    model inference, and audio post-processing.
    """
    if use_audio_prompt and not audio_prompt_path:
        raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")
    cuda_idx = cuda_idx
    max_new_tokens = max_new_tokens * 100

    with tempfile.TemporaryDirectory() as output_dir:
        stage1_output_dir = os.path.join(output_dir, f"stage1")
        os.makedirs(stage1_output_dir, exist_ok=True)

        stage1_output_set = []

        genres = genre_txt.strip()
        lyrics = split_lyrics(lyrics_txt + "\n")
        # instruction
        full_lyrics = "\n".join(lyrics)
        prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
        prompt_texts += lyrics

        random_id = uuid.uuid4()
        raw_output = None

        # Decoding config
        top_p = 0.93
        temperature = 1.0
        repetition_penalty = 1.2
        start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
        end_of_segment = mmtokenizer.tokenize('[end_of_segment]')

        # Format text prompt
        run_n_segments = min(run_n_segments + 1, len(lyrics))

        print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))

        for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
            section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
            guidance_scale = 1.5 if i <= 1 else 1.2  # Guidance scale adjusted based on segment index
            if i == 0:
                continue
            if i == 1:
                if use_audio_prompt:
                    audio_prompt = load_audio_mono(audio_prompt_path)
                    audio_prompt.unsqueeze_(0)
                    with torch.no_grad():
                        raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
                    raw_codes = raw_codes.transpose(0, 1)
                    raw_codes = raw_codes.cpu().numpy().astype(np.int16)
                    # Format audio prompt
                    code_ids = codectool.npy2ids(raw_codes[0])
                    audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]  # 50 is tps of xcodec
                    audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
                        mmtokenizer.eoa]
                    sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
                        "[end_of_reference]")
                    head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
                else:
                    head_id = mmtokenizer.tokenize(prompt_texts[0])
                prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
            else:
                prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids

            prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
            input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids

            # Use window slicing in case output sequence exceeds the context of model
            max_context = 16384 - max_new_tokens - 1
            if input_ids.shape[-1] > max_context:
                print(
                    f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
                input_ids = input_ids[:, -(max_context):]

            with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
                output_seq = model.generate(
                    input_ids=input_ids,
                    max_new_tokens=max_new_tokens,
                    min_new_tokens=100,  # Keep min_new_tokens to avoid short generations
                    do_sample=True,
                    top_p=top_p,
                    temperature=temperature,
                    repetition_penalty=repetition_penalty,
                    eos_token_id=mmtokenizer.eoa,
                    pad_token_id=mmtokenizer.eoa,
                    logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
                    guidance_scale=guidance_scale,
                    use_cache=True,
                    num_beams=3
                )
                if output_seq[0][-1].item() != mmtokenizer.eoa:
                    tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
                    output_seq = torch.cat((output_seq, tensor_eoa), dim=1)

            if i > 1:
                raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
            else:
                raw_output = output_seq
            print(len(raw_output))

        # save raw output and check sanity
        ids = raw_output[0].cpu().numpy()
        soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
        eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
        if len(soa_idx) != len(eoa_idx):
            raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')

        vocals = []
        instrumentals = []
        range_begin = 1 if use_audio_prompt else 0
        for i in range(range_begin, len(soa_idx)):
            codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
            if codec_ids[0] == 32016:
                codec_ids = codec_ids[1:]
            codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]  # Ensure even length for reshape
            vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
            vocals.append(vocals_ids)
            instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
            instrumentals.append(instrumentals_ids)
        vocals = np.concatenate(vocals, axis=1)
        instrumentals = np.concatenate(instrumentals, axis=1)

        vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy')
        inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy')
        np.save(vocal_save_path, vocals)
        np.save(inst_save_path, instrumentals)
        stage1_output_set.append(vocal_save_path)
        stage1_output_set.append(inst_save_path)

        print("Converting to Audio...")

        # convert audio tokens to audio
        def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
            folder_path = os.path.dirname(path)
            if not os.path.exists(folder_path):
                os.makedirs(folder_path)
            limit = 0.99
            max_val = wav.abs().max()
            wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
            torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)

        # reconstruct tracks
        recons_output_dir = os.path.join(output_dir, "recons")
        recons_mix_dir = os.path.join(recons_output_dir, 'mix')
        os.makedirs(recons_mix_dir, exist_ok=True)
        tracks = []
        for npy in stage1_output_set:
            codec_result = np.load(npy)
            decodec_rlt = []
            with torch.no_grad():
                decoded_waveform = codec_model.decode(
                    torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
            decoded_waveform = decoded_waveform.cpu().squeeze(0)
            decodec_rlt.append(torch.as_tensor(decoded_waveform))
            decodec_rlt = torch.cat(decodec_rlt, dim=-1)
            save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")  # Save as mp3 for gradio
            tracks.append(save_path)
            save_audio(decodec_rlt, save_path, 16000)
        # mix tracks
        for inst_path in tracks:
            try:
                if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path:
                    # find pair
                    vocal_path = inst_path.replace('instrumental', 'vocal')
                    if not os.path.exists(vocal_path):
                        continue
                    # mix
                    recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
                    vocal_stem, sr = sf.read(vocal_path)
                    instrumental_stem, _ = sf.read(inst_path)
                    mix_stem = (vocal_stem + instrumental_stem) / 1
                    return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16))
            except Exception as e:
                print(e)
                return None, None, None

# Gradio Interface
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/multimodal-art-projection/YuE">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a>
            <a href="https://map-yue.github.io">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
            <a href="https://huggingface.co./spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
                <img src="https://huggingface.co./datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                genre_txt = gr.Textbox(label="Genre")
                lyrics_txt = gr.Textbox(label="Lyrics")
                use_audio_prompt = gr.Checkbox(label="Use Audio Prompt?", value=False)
                audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)")
            with gr.Column():
                num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
                max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
                submit_btn = gr.Button("Submit")
                music_out = gr.Audio(label="Mixed Audio Result")
                with gr.Accordion(label="Vocal and Instrumental Result", open=False):
                    vocal_out = gr.Audio(label="Vocal Audio")
                    instrumental_out = gr.Audio(label="Instrumental Audio")
        gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")

        # When the "Submit" button is clicked, pass the additional audio-related inputs to the function.
        submit_btn.click(
            fn=generate_music,
            inputs=[
                genre_txt,
                lyrics_txt,
                num_segments,
                max_new_tokens,
                use_audio_prompt,
                audio_prompt_input,
            ],
            outputs=[music_out, vocal_out, instrumental_out]
        )

        # Examples updated to only include text inputs
        gr.Examples(
            examples=[
                [
                    "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
                    """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear

[chorus]
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
                    """
                ],
                [
                    "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
                    """[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.

[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
                    """
                ]
            ],
            inputs=[genre_txt, lyrics_txt],
            outputs=[music_out, vocal_out, instrumental_out],
            cache_examples=True,
            cache_mode="eager",
            fn=generate_music
        )

demo.queue().launch(show_error=True)