# First stage: build dependencies FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm # Install Lambda web adapter COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.3 /lambda-adapter /opt/extensions/lambda-adapter # Install wget, git, curl RUN apt-get update && \ apt-get install -y wget git curl && \ apt-get clean && rm -rf /var/lib/apt/lists/* WORKDIR /src COPY requirements.txt . # Optimized dependency installation RUN pip install --no-cache-dir -r requirements.txt && \ pip install --no-cache-dir gradio==4.36.0 # Create a directory for the models and switch to user RUN mkdir /model && \ useradd -m -u 1000 user && \ chown -R user:user /model USER user WORKDIR /home/user # Download the GGUF model to local model/phi directory: ENV REPO_ID "QuantFactory/Phi-3-mini-128k-instruct-GGUF" ENV MODEL_FILE "Phi-3-mini-128k-instruct.Q4_K_M.gguf" RUN python -c "from huggingface_hub import hf_hub_download; \ hf_hub_download(repo_id='$REPO_ID', filename='$MODEL_FILE', local_dir='/model/phi')" # Download the transformers-based models RUN curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash && \ apt-get install -y git-lfs && \ git lfs install RUN git clone https://huggingface.co./stacked-summaries/flan-t5-large-stacked-samsum-1024 /model/stacked_t5 && \ rm -rf /model/stacked_t5/.git && \ git clone https://huggingface.co./pszemraj/long-t5-tglobal-base-16384-book-summary /model/long_t5 && \ rm -rf /model/long_t5/.git ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH \ PYTHONPATH=$HOME/app \ PYTHONUNBUFFERED=1 \ GRADIO_ALLOW_FLAGGING=never \ GRADIO_NUM_PORTS=1 \ GRADIO_SERVER_NAME=0.0.0.0 \ GRADIO_SERVER_PORT=7860 \ GRADIO_THEME=huggingface \ SYSTEM=spaces # Switch back to root to copy the app files USER root WORKDIR /home/user/app # Copy the current directory contents into the container at $HOME/app setting the owner to the user COPY --chown=user . $HOME/user/app # Switch back to the user to run the app USER user CMD ["python", "app.py"]