Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from transformers import AutoConfig, Wav2Vec2FeatureExtractor | |
from src.models import Wav2Vec2ForSpeechClassification #imported from https://github.com/m3hrdadfi/soxan | |
import gradio as gr | |
import librosa | |
device = torch.device("cpu") | |
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" | |
config = AutoConfig.from_pretrained(model_name_or_path) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) | |
sampling_rate = feature_extractor.sampling_rate | |
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path) | |
#load input file and resample to 16kHz | |
def load_data(path): | |
speech, sampling_rate = librosa.load(path) | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
if sampling_rate != 16000: | |
speech = librosa.resample(speech, sampling_rate,16000) | |
return speech | |
#modified version of predict function from https://github.com/m3hrdadfi/soxan | |
def inference(path): | |
speech = load_data(path) | |
inputs = feature_extractor(speech, return_tensors="pt").input_values | |
with torch.no_grad(): | |
logits = model(inputs).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = {config.id2label[i]: float(round(score,2)) for i, score in enumerate(scores)} | |
return outputs | |
inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="microphone") | |
outputs = gr.outputs.Label(type="confidences", label = "Output Scores") | |
title = "Wav2Vec2 Speech Emotion Recognition" | |
description = "This is a demo of the Wav2Vec2 Speech Emotion Recognition model. Record an audio file and the top emotions inferred will be displayed." | |
examples = ['data/heart.wav', 'data/happy26.wav', 'data/jm24.wav', 'data/newton.wav', 'data/speeding.wav'] | |
article = "<a href = 'https://github.com/m3hrdadfi/soxan'> Wav2Vec2 Speech Classification Github Repository" | |
iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, theme="peach", examples=examples) | |
iface.launch(debug=True) |