import gradio as gr import math import os import yolov5 import cv2 import torch import numpy as np # load model model_face = torch.load('face_model.pt') model_face.eval() model_plate = yolov5.load('keremberke/yolov5m-license-plate', device="cpu") # # set model parameters model_plate.conf = 0.25 # NMS confidence threshold model_plate.iou = 0.45 # NMS IoU threshold model_plate.agnostic = False # NMS class-agnostic model_plate.multi_label = False # NMS multiple labels per box model_plate.max_det = 1000 # maximum number of detections per image def blur_plates_image(image, plate_blur): results_plate = model_plate(image, augment=True) boxes_plate_list = results_plate.pred[0][:, :4].cpu().numpy().tolist() for box in boxes_plate_list: ROI = image[int(box[1]):int(box[3]), int(box[0]):int(box[2])] blur_value = (int(plate_blur) * 2 - 1) blur = cv2.GaussianBlur(ROI, (blur_value, blur_value), 20, cv2.BORDER_DEFAULT) # Insert ROI back into image image[int(box[1]):int(box[3]), int(box[0]):int(box[2])] = blur return image def blur_faces_image(image, face_blur): results = model_face(np.array(image)) # parse results boxes_face_list = results.pred[0][:, :4].cpu().numpy().tolist() # x1, y1, x2, y2 for box in boxes_face_list: p1 = (int(box[0]), int(box[1])) p2 = (int(box[2]), int(box[3])) w = p2[0] - p1[0] h = p2[1] - p1[1] circle_center = ((p1[0] + p2[0]) // 2, (p1[1] + p2[1]) // 2) circle_radius = int(math.sqrt(w * w + h * h) // 2) ROI = np.zeros(image.shape, dtype='uint8') cv2.circle(ROI, circle_center, circle_radius, (255, 255, 255), -1) blur_value = (int(face_blur) * 2 - 1) blur = cv2.GaussianBlur(image, (blur_value, blur_value), cv2.BORDER_DEFAULT) image = np.where(ROI > 0, blur, image) return image def blur(image, face_blur, plate_blur): image = blur_plates_image(image, plate_blur) image = blur_faces_image(image, face_blur) return image sciling = "
" interface = gr.Interface( fn=blur, inputs=[ gr.Image(source="upload", type="numpy", optional=False), gr.Slider(minimum=0, maximum=30, step=1, value=5, label="Face Blur Intensity"), gr.Slider(minimum=0, maximum=30, step=1, value=5, label="Plate Blur Intensity"), ], outputs="image", title= sciling + "Plate Licenses and Faces Blur", enable_queue=False, sidebar="", description="This app uses image processing techniques to automatically blur out license plates and faces in photos. Protect the privacy of individuals and comply with regulations by obscuring sensitive information in your images with ease.", examples=[["images/22.png", 5, 5], ["images/18.jpg", 5, 5]], css=".gradio-container {margin-top:80px !important;};.g-window {background-image: url('logo.png'); background-size: cover;}", ).launch()