gmarti commited on
Commit
55de749
·
1 Parent(s): 3f67478

Upload app and model

Browse files
Files changed (3) hide show
  1. app.py +95 -0
  2. images/18.jpg +0 -0
  3. images/22.png +0 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import math
3
+ import os
4
+ import yolov5
5
+ import cv2
6
+ import torch
7
+ import numpy as np
8
+ from models.experimental import attempt_load
9
+
10
+ # load model
11
+ #model_face = torch.hub.load('.', 'custom', '/home/gmarti/Documentos/detection/yolov5s-face.pt', source='local', force_reload=True).to("cpu")
12
+ #torch.save(model_face, 'face_model.pt')
13
+ model_face = torch.load('/home/gmarti/Documentos/detection/face_model.pt')
14
+ model_face.eval()
15
+ model_plate = yolov5.load('keremberke/yolov5m-license-plate', device="cpu")
16
+ # # set model parameters
17
+ model_plate.conf = 0.25 # NMS confidence threshold
18
+ model_plate.iou = 0.45 # NMS IoU threshold
19
+ model_plate.agnostic = False # NMS class-agnostic
20
+ model_plate.multi_label = False # NMS multiple labels per box
21
+ model_plate.max_det = 1000 # maximum number of detections per image
22
+
23
+
24
+ #model = torch.hub.load('.', 'yolov5s','/home/gmarti/Documentos/detection/yolov5s-face.pt', 'yolov5s', device='cpu', source='local')
25
+
26
+ #model_face = torch.load('/home/gmarti/Documentos/detection/yolov5s-face.pt', map_location=torch.device("cpu"))
27
+ #model_face = attempt_load('/home/gmarti/Documentos/detection/yolov5s-face.pt', map_location=torch.device("cpu"))
28
+ #model_face.to(torch.device("cpu"))
29
+
30
+
31
+ def blur_plates_image(image, plate_blur):
32
+
33
+ results_plate = model_plate(image, augment=True)
34
+ boxes_plate_list = results_plate.pred[0][:, :4].cpu().numpy().tolist()
35
+ for box in boxes_plate_list:
36
+ ROI = image[int(box[1]):int(box[3]), int(box[0]):int(box[2])]
37
+
38
+ blur_value = (plate_blur * 2 - 1)
39
+ blur = cv2.GaussianBlur(ROI, (blur_value, blur_value), 20, cv2.BORDER_DEFAULT)
40
+ # Insert ROI back into image
41
+ image[int(box[1]):int(box[3]), int(box[0]):int(box[2])] = blur
42
+
43
+ return image
44
+
45
+
46
+ def blur_faces_image(image, face_blur):
47
+
48
+ results = model_face(np.array(image))
49
+ #results = model_face(torch.from_numpy(image))
50
+
51
+ # parse results
52
+ boxes_face_list = results.pred[0][:, :4].cpu().numpy().tolist() # x1, y1, x2, y2
53
+
54
+ for box in boxes_face_list:
55
+ p1 = (int(box[0]), int(box[1]))
56
+ p2 = (int(box[2]), int(box[3]))
57
+ w = p2[0] - p1[0]
58
+ h = p2[1] - p1[1]
59
+
60
+ circle_center = ((p1[0] + p2[0]) // 2, (p1[1] + p2[1]) // 2)
61
+ circle_radius = int(math.sqrt(w * w + h * h) // 2)
62
+ ROI = np.zeros(image.shape, dtype='uint8')
63
+ cv2.circle(ROI, circle_center, circle_radius, (255, 255, 255), -1)
64
+
65
+ blur_value = (face_blur * 2 - 1)
66
+ blur = cv2.GaussianBlur(image, (blur_value, blur_value), cv2.BORDER_DEFAULT)
67
+
68
+ image = np.where(ROI > 0, blur, image)
69
+
70
+ return image
71
+
72
+
73
+ def blur(image, face_blur, plate_blur):
74
+
75
+ image = blur_plates_image(image, plate_blur)
76
+ image = blur_faces_image(image, face_blur)
77
+
78
+ return image
79
+
80
+
81
+ gr.Interface(
82
+ fn=blur,
83
+ inputs=[
84
+ gr.Image(source="upload", type="numpy", optional=False),
85
+ gr.Slider(minimum=0, maximum=30, step=1, value=5, label="Face Blur Intensity"),
86
+ gr.Slider(minimum=0, maximum=30, step=1, value=5, label="Plate Blur Intensity"),
87
+ ],
88
+ outputs="image",
89
+ title="Plate Licenses and Faces Blur",
90
+ enable_queue=False,
91
+ sidebar="<img src='images/22.png' width='100%'/>",
92
+ description="This app uses image processing techniques to automatically blur out license plates and faces in photos. Protect the privacy of individuals and comply with regulations by obscuring sensitive information in your images with ease.",
93
+ examples=[["images/22.png"], ["images/26.jpg"], ["images/23.jpg"], ["images/18.jpg"]],
94
+ css=".gradio-container {margin-top:80px !important;}"
95
+ ).launch()
images/18.jpg ADDED
images/22.png ADDED