scholar-2001 commited on
Commit
4cfc34d
Β·
1 Parent(s): 9db63ff
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ chromadb/*.bin filter=lfs diff=lfs merge=lfs -text
37
+ chromadb/*.sqlite3 filter=lfs diff=lfs merge=lfs -text
38
+ chroma_db/**/* filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import chromadb
3
+ from chromadb.utils import embedding_functions
4
+ import groq
5
+ from typing import Dict
6
+ import os
7
+
8
+ class CourseAdvisor:
9
+ def __init__(self, db_path: str = "./chroma_db"):
10
+ """Initialize the course advisor with existing ChromaDB database."""
11
+ # Initialize persistent client with path
12
+ self.chroma_client = chromadb.PersistentClient(path=db_path)
13
+
14
+ # Initialize embedding function
15
+ self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
16
+ model_name="jinaai/jina-embeddings-v2-base-en"
17
+ )
18
+
19
+ # Get existing collection
20
+ self.collection = self.chroma_client.get_collection(
21
+ name="courses",
22
+ embedding_function=self.embedding_function
23
+ )
24
+
25
+ def query_courses(self, query_text: str, chat_history: str, api_key: str, n_results: int = 3) -> Dict:
26
+ """Query the vector database and get course recommendations."""
27
+ # Initialize Groq client with provided API key
28
+ groq_client = groq.Groq(api_key=api_key)
29
+
30
+ try:
31
+ # Get relevant documents from vector DB
32
+ results = self.collection.query(
33
+ query_texts=[query_text],
34
+ n_results=min(n_results, self.collection.count()),
35
+ include=['documents', 'metadatas']
36
+ )
37
+
38
+ # Prepare context from retrieved documents
39
+ docs_context = "\n\n".join(results['documents'][0])
40
+
41
+ except Exception as e:
42
+ st.error(f"Error querying database: {str(e)}")
43
+ return {
44
+ 'llm_response': "I encountered an error while searching the course database. Please try again.",
45
+ 'retrieved_courses': []
46
+ }
47
+
48
+ # Create prompt with chat history
49
+ prompt = f"""Previous conversation:
50
+ {chat_history}
51
+
52
+ Current user query: {query_text}
53
+
54
+ Relevant course information:
55
+ {docs_context}
56
+
57
+ Please provide course recommendations based on the entire conversation context. Format your response as:
58
+ 1. Understanding of the user's needs (based on conversation history)
59
+ 2. Overall recommendation with reasoning
60
+ 3. Specific benefits of each recommended course
61
+ 4. Learning path suggestion (if applicable)
62
+ 5. Any prerequisites or important notes"""
63
+
64
+ try:
65
+ # Get response from Groq
66
+ completion = groq_client.chat.completions.create(
67
+ messages=[
68
+ {"role": "system", "content": "You are a helpful course advisor who provides detailed, relevant course recommendations based on the user's needs and conversation history. Keep responses clear and well-structured."},
69
+ {"role": "user", "content": prompt}
70
+ ],
71
+ model="mixtral-8x7b-32768",
72
+ temperature=0.7,
73
+ )
74
+
75
+ return {
76
+ 'llm_response': completion.choices[0].message.content,
77
+ 'retrieved_courses': results['metadatas'][0]
78
+ }
79
+
80
+ except Exception as e:
81
+ st.error(f"Error with Groq API: {str(e)}")
82
+ return {
83
+ 'llm_response': "I encountered an error while generating recommendations. Please check your API key and try again.",
84
+ 'retrieved_courses': []
85
+ }
86
+
87
+ def initialize_session_state():
88
+ """Initialize session state variables."""
89
+ if 'messages' not in st.session_state:
90
+ st.session_state.messages = []
91
+ if 'course_advisor' not in st.session_state:
92
+ st.session_state.course_advisor = CourseAdvisor()
93
+ if 'api_key' not in st.session_state:
94
+ st.session_state.api_key = ""
95
+
96
+ def get_chat_history() -> str:
97
+ """Format chat history for LLM context."""
98
+ history = []
99
+ for message in st.session_state.messages[-5:]: # Only use last 5 messages for context
100
+ role = message["role"]
101
+ content = message["content"]
102
+ history.append(f"{role}: {content}")
103
+ return "\n".join(history)
104
+
105
+ def display_course_card(course: Dict):
106
+ """Display a single course recommendation in a card format."""
107
+ with st.container():
108
+ # Add a light background and padding
109
+ with st.container():
110
+ st.markdown("""
111
+ <style>
112
+ .course-card {
113
+ background-color: #f8f9fa;
114
+ padding: 1rem;
115
+ border-radius: 0.5rem;
116
+ margin-bottom: 1rem;
117
+ }
118
+ </style>
119
+ """, unsafe_allow_html=True)
120
+
121
+ with st.container():
122
+ st.markdown('<div class="course-card">', unsafe_allow_html=True)
123
+
124
+ # Course title
125
+ st.markdown(f"### {course['title']}")
126
+
127
+ col1, col2 = st.columns(2)
128
+
129
+ with col1:
130
+ # Handle categories - convert to list if string
131
+ categories = course.get('categories', 'N/A')
132
+ if isinstance(categories, str):
133
+ # Split by comma if it's a comma-separated string
134
+ categories = [cat.strip() for cat in categories.split(',')]
135
+ elif not isinstance(categories, list):
136
+ categories = [str(categories)]
137
+
138
+ # Display categories as bullet points if multiple
139
+ if len(categories) > 1:
140
+ st.markdown("**Categories:**")
141
+ for category in categories:
142
+ st.markdown(f"- {category}")
143
+ else:
144
+ st.markdown(f"**Category:** {categories[0]}")
145
+
146
+ st.markdown(f"**Lessons:** {course.get('lessons', 'N/A')}")
147
+
148
+ with col2:
149
+ st.markdown(f"**Price:** {course.get('price', 'N/A')}")
150
+ if 'url' in course:
151
+ st.markdown(f"**[Visit Course]({course['url']})**")
152
+
153
+ st.markdown('</div>', unsafe_allow_html=True)
154
+
155
+ st.markdown("---")
156
+
157
+ def main():
158
+ st.set_page_config(
159
+ page_title="Course Recommender",
160
+ page_icon="πŸ“š",
161
+ layout="wide"
162
+ )
163
+
164
+ st.title("πŸ“š AI Course Recommender")
165
+
166
+ # Initialize session state
167
+ initialize_session_state()
168
+
169
+ # Display collection info
170
+ collection = st.session_state.course_advisor.collection
171
+ st.sidebar.info(f"Connected to database with {collection.count()} courses")
172
+
173
+ # Sidebar
174
+ with st.sidebar:
175
+ st.header("Settings")
176
+
177
+ # API key input
178
+ api_key = st.text_input("Enter Groq API Key",
179
+ type="password",
180
+ value=st.session_state.api_key)
181
+ if api_key != st.session_state.api_key:
182
+ st.session_state.api_key = api_key
183
+
184
+ # Clear chat button
185
+ if st.button("Clear Chat History"):
186
+ st.session_state.messages = []
187
+
188
+ # Main chat interface
189
+ st.header("Chat with AI Course Advisor")
190
+
191
+ # Display chat history
192
+ for message in st.session_state.messages:
193
+ with st.chat_message(message["role"]):
194
+ st.markdown(message["content"])
195
+
196
+ # Chat input
197
+ if prompt := st.chat_input("What would you like to learn?"):
198
+ # Check if API key is provided
199
+ if not st.session_state.api_key:
200
+ st.error("Please enter your Groq API key in the sidebar.")
201
+ return
202
+
203
+ # Add user message to chat history
204
+ st.session_state.messages.append({"role": "user", "content": prompt})
205
+
206
+ with st.chat_message("user"):
207
+ st.markdown(prompt)
208
+
209
+ # Get AI response
210
+ with st.chat_message("assistant"):
211
+ with st.spinner("Thinking..."):
212
+ # Get formatted chat history
213
+ chat_history = get_chat_history()
214
+
215
+ # Query courses with chat history
216
+ response = st.session_state.course_advisor.query_courses(
217
+ prompt,
218
+ chat_history,
219
+ st.session_state.api_key
220
+ )
221
+
222
+ # Display AI recommendation
223
+ st.markdown(response['llm_response'])
224
+
225
+ # Display course cards if any courses were retrieved
226
+ if response['retrieved_courses']:
227
+ st.markdown("### πŸ“‹ Recommended Courses")
228
+ for course in response['retrieved_courses']:
229
+ display_course_card(course)
230
+
231
+ # Add assistant response to chat history
232
+ st.session_state.messages.append({
233
+ "role": "assistant",
234
+ "content": response['llm_response'] + "\n\n" + "### Recommended Courses\n" +
235
+ "\n".join([f"- {course['title']}" for course in response['retrieved_courses']])
236
+ })
237
+
238
+ if __name__ == "__main__":
239
+ main()
chroma_db/bca992f1-533f-4712-9825-dffc5cb4917e/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a13e72541800c513c73dccea69f79e39cf4baef4fa23f7e117c0d6b0f5f99670
3
+ size 3212000
chroma_db/bca992f1-533f-4712-9825-dffc5cb4917e/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
3
+ size 100
chroma_db/bca992f1-533f-4712-9825-dffc5cb4917e/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2823f194bebd05c68f5f4e78e39d91ac3064fb61f9163082a55db490fea91b56
3
+ size 4000
chroma_db/bca992f1-533f-4712-9825-dffc5cb4917e/link_lists.bin ADDED
File without changes
chroma_db/chroma.sqlite3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8973c5639f318e93a15f9963255d93350efdf75478f940cd8410ee3195646e07
3
+ size 2293760
requiremnts.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ chromadb
3
+ groq