import os import logging import torch import torch.nn as nn from utilities.model import align_and_update_state_dicts from utilities.distributed import init_distributed from utilities.arguments import load_opt_from_config_files import huggingface_hub logger = logging.getLogger(__name__) class BaseModel(nn.Module): def __init__(self, opt, module: nn.Module): super(BaseModel, self).__init__() self.opt = opt self.model = module def forward(self, *inputs, **kwargs): outputs = self.model(*inputs, **kwargs) return outputs def save_pretrained(self, save_dir): torch.save(self.model.state_dict(), os.path.join(save_dir, "model_state_dict.pt")) def from_pretrained(self, pretrained, filename: str = "biomedparse_v1.pt", local_dir: str = "./pretrained", config_dir: str = "./configs"): if pretrained.startswith("hf_hub:"): hub_name = pretrained.split(":")[1] huggingface_hub.hf_hub_download(hub_name, filename=filename, local_dir=local_dir) huggingface_hub.hf_hub_download(hub_name, filename="config.yaml", local_dir=config_dir) load_dir = os.path.join(local_dir, filename) else: load_dir = pretrained state_dict = torch.load(load_dir, map_location=self.opt['device']) state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict) self.model.load_state_dict(state_dict, strict=False) return self