scdrand23's picture
not working version
814a594
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
import pickle
from distutils import log
import torch
import torch.nn.functional as F
import torch.distributed as dist
from einops import rearrange, repeat
from timm.loss import SoftTargetCrossEntropy
soft_cross_entropy = SoftTargetCrossEntropy()
def is_dist_initialized():
return torch.distributed.is_initialized()
def get_world_size():
if is_dist_initialized():
return torch.distributed.get_world_size()
return 1
def get_rank():
if is_dist_initialized():
return dist.get_rank()
return 0
def all_gather_grad(x):
if get_world_size() > 1:
all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
torch.distributed.all_gather(all_x, x)
all_x[torch.distributed.get_rank()] = x
x = torch.cat(all_x, dim=0)
return x
def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1):
"""
Args:
image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256
text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256
Returns:
"""
# [B, L1, C], L1 = 1
# image_feat = F.normalize(image_feat, dim=-1)
# [B, L2, C]
# text_feat = F.normalize(text_feat, dim=-1)
# HACK: normalize outside
# [B, L1, L2]
dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l')
# [B, L2, L1]
dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l')
batch = image_feat.shape[0]
img_len = image_feat.shape[1]
text_len = text_feat.shape[1]
# [B, L1, L2]
pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2')
# [B, L2, L1]
pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1')
image_x = rearrange(image_feat, 'b l c -> (b l) c')
text_x = rearrange(text_feat, 'b l c -> (b l) c')
logits_per_img = image_x @ all_gather_grad(text_x).t()
logits_per_text = text_x @ all_gather_grad(image_x).t()
# get label globally
# [B, L1, B, L2, W]
labels_per_img = F.one_hot(
torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(),
num_classes=get_world_size()).to(image_x.dtype)
labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat(
torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1')
# [BxL1, WxBxL2]
labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)')
# [B, L2, B, L1, W]
labels_per_text = F.one_hot(
torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(),
num_classes=get_world_size()).to(text_x.dtype)
labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat(
torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1')
# [BxL2, WxBxL1]
labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)')
logit_scale = temperature.exp().clamp(max=100)
loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img)
loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text)
loss = 0.5 * (loss_img + loss_text)
return loss
def vl_contrastive_loss(image_feat, text_feat, temperature=1):
# if image_id or text_id is None, it should be None across all GPUs
# image_feat = F.normalize(image_feat, dim=1)
# text_feat = F.normalize(text_feat, dim=1)
# handle normalization outside
# add the following 4 lines
image_feat = all_gather_grad(image_feat)
text_feat = all_gather_grad(text_feat)
logits = torch.matmul(image_feat, text_feat.t())
logit_scale = temperature.exp().clamp(max=100)
gt = torch.arange(logits.shape[0], device=logits.device)
loss1 = F.cross_entropy(logit_scale * logits, gt)
loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
return (loss1 + loss2) / 2 # scale it up by the number of GPUs
def all_gather_pickle(data, device):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to(device)
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()])
size_list = [torch.LongTensor([0]) for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)) )
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,))
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def all_gather_arbitary_tensor(tensor):
if get_world_size() > 1:
device = tensor.device
tensor_batch = all_gather_pickle(tensor.cpu(), device)
tensor_batch = [x.to(device) for x in tensor_batch]
tensor_batch[torch.distributed.get_rank()] = tensor
tensor_batch = torch.cat(tensor_batch, dim=0)
else:
tensor_batch = tensor
return tensor_batch
def ql_contrastive_loss(image_feat, text_feat, temperature=1):
# add the following 4 lines
image_feat = all_gather_arbitary_tensor(image_feat)
text_feat = all_gather_arbitary_tensor(text_feat)
logits = torch.matmul(image_feat, text_feat.t())
logit_scale = temperature.exp().clamp(max=100)
gt = torch.arange(logits.shape[0], device=logits.device)
loss1 = F.cross_entropy(logit_scale * logits, gt)
loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
return (loss1 + loss2) / 2 # scale it up by the number of GPUs
def vl_similarity(image_feat, text_feat, temperature=1):
# Only support single GPU for now.
logits = torch.matmul(image_feat, text_feat.t())
logits = temperature.exp().clamp(max=100) * logits
return logits
def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1):
# add the following 4 lines
image_feat = all_gather_arbitary_tensor(image_feat)
text_feat = all_gather_arbitary_tensor(text_feat)
text_hash_batch = all_gather_pickle(text_hash, text_feat.device)
text_hash_all = torch.cat(text_hash_batch)
text_hash_all_unique = torch.unique(text_hash_all).tolist()
gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device)
text_hash_all = text_hash_all.tolist()
text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique])
for idx, txt in enumerate(text_hash_all):
gt[idx][text_hash_all_unique.index(txt)] = 1
logits = torch.matmul(image_feat, text_feat_unique.t())
logits = logits*temperature.exp().clamp(max=100)
loss_img = soft_cross_entropy(logits, gt)
loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True))
loss = 0.7 * loss_img + 0.3 * loss_text
return loss
def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training):
# add the following 4 lines
image_feat = all_gather_grad(image_feat_inp.contiguous())
text_feat = all_gather_grad(text_feat_inp.contiguous())
image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7)
text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7)
temperature = lang_enc.logit_scale
logits = torch.matmul(image_feat, text_feat.t())
logit_scale = temperature.exp().clamp(max=100)
gt = torch.arange(logits.shape[0], device=logits.device)
loss1 = F.cross_entropy(logit_scale * logits, gt)
loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
return (loss1 + loss2) / 2 # scale it up by the number of GPUs