|
import os |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from utilities.model import align_and_update_state_dicts |
|
|
|
from utilities.distributed import init_distributed |
|
from utilities.arguments import load_opt_from_config_files |
|
|
|
import huggingface_hub |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class BaseModel(nn.Module): |
|
def __init__(self, opt, module: nn.Module): |
|
super(BaseModel, self).__init__() |
|
self.opt = opt |
|
self.model = module |
|
|
|
def forward(self, *inputs, **kwargs): |
|
outputs = self.model(*inputs, **kwargs) |
|
return outputs |
|
|
|
def save_pretrained(self, save_dir): |
|
torch.save(self.model.state_dict(), os.path.join(save_dir, "model_state_dict.pt")) |
|
|
|
def from_pretrained(self, pretrained, filename: str = "biomedparse_v1.pt", |
|
local_dir: str = "./pretrained", config_dir: str = "./configs"): |
|
if pretrained.startswith("hf_hub:"): |
|
hub_name = pretrained.split(":")[1] |
|
huggingface_hub.hf_hub_download(hub_name, filename=filename, |
|
local_dir=local_dir) |
|
huggingface_hub.hf_hub_download(hub_name, filename="config.yaml", |
|
local_dir=config_dir) |
|
load_dir = os.path.join(local_dir, filename) |
|
else: |
|
load_dir = pretrained |
|
|
|
state_dict = torch.load(load_dir, map_location=self.opt['device']) |
|
state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict) |
|
self.model.load_state_dict(state_dict, strict=False) |
|
return self |