#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import numpy as np import gradio as gr import pandas as pd import numpy as np import torch from torch import nn from torch.nn import init, MarginRankingLoss from torch.optim import Adam from distutils.version import LooseVersion from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable import math from transformers import AutoConfig, AutoModel, AutoTokenizer import nltk import re import torch.optim as optim from transformers import AutoModelForMaskedLM import torch.nn.functional as F import random # In[2]: # eng_dict = [] # with open('eng_dict.txt', 'r') as file: # # Read each line from the file and append it to the list # for line in file: # # Remove leading and trailing whitespace (e.g., newline characters) # cleaned_line = line.strip() # eng_dict.append(cleaned_line) # In[14]: def greet(X, ny): global eng_dict if ny == 0: rand_no = random.random() tok_map = {2: 0.4363429005892416, 1: 0.6672580202327398, 4: 0.7476060740459144, 3: 0.9618703668504087, 6: 0.9701028532809564, 7: 0.9729244545819342, 8: 0.9739508754144756, 5: 0.9994508859743607, 9: 0.9997507867114407, 10: 0.9999112969650892, 11: 0.9999788802297832, 0: 0.9999831041838266, 12: 0.9999873281378701, 22: 0.9999957760459568, 14: 1.0000000000000002} for key in tok_map.keys(): if rand_no < tok_map[key]: num_sub_tokens_label = key break else: num_sub_tokens_label = ny tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") model.load_state_dict(torch.load('model_26_2')) model.eval() X_init = X X_init = X_init.replace("[MASK]", " [MASK] ") X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label)) tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt') input_id_chunki = tokens['input_ids'][0].split(510) input_id_chunks = [] mask_chunks = [] mask_chunki = tokens['attention_mask'][0].split(510) for tensor in input_id_chunki: input_id_chunks.append(tensor) for tensor in mask_chunki: mask_chunks.append(tensor) xi = torch.full((1,), fill_value=101) yi = torch.full((1,), fill_value=1) zi = torch.full((1,), fill_value=102) for r in range(len(input_id_chunks)): input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1) input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1) mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1) mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1) di = torch.full((1,), fill_value=0) for i in range(len(input_id_chunks)): pad_len = 512 - input_id_chunks[i].shape[0] if pad_len > 0: for p in range(pad_len): input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1) mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1) vb = torch.ones_like(input_id_chunks[0]) fg = torch.zeros_like(input_id_chunks[0]) maski = [] for l in range(len(input_id_chunks)): masked_pos = [] for i in range(len(input_id_chunks[l])): if input_id_chunks[l][i] == tokenizer.mask_token_id: #103 if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id: continue masked_pos.append(i) maski.append(masked_pos) input_ids = torch.stack(input_id_chunks) att_mask = torch.stack(mask_chunks) outputs = model(input_ids, attention_mask = att_mask) last_hidden_state = outputs[0].squeeze() l_o_l_sa = [] sum_state = [] for t in range(num_sub_tokens_label): c = [] l_o_l_sa.append(c) if len(maski) == 1: masked_pos = maski[0] for k in masked_pos: for t in range(num_sub_tokens_label): l_o_l_sa[t].append(last_hidden_state[k+t]) else: for p in range(len(maski)): masked_pos = maski[p] for k in masked_pos: for t in range(num_sub_tokens_label): if (k+t) >= len(last_hidden_state[p]): l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])]) continue l_o_l_sa[t].append(last_hidden_state[p][k+t]) for t in range(num_sub_tokens_label): sum_state.append(l_o_l_sa[t][0]) for i in range(len(l_o_l_sa[0])): if i == 0: continue for t in range(num_sub_tokens_label): sum_state[t] = sum_state[t] + l_o_l_sa[t][i] yip = len(l_o_l_sa[0]) # qw = [] er = "" val = 0.0 for t in range(num_sub_tokens_label): sum_state[t] /= yip idx = torch.topk(sum_state[t], k=5, dim=0)[1] probs = F.softmax(sum_state[t], dim=0) wor = [tokenizer.decode(i.item()).strip() for i in idx] cnt = 0 for kl in wor: if all(char.isalpha() for char in kl): # qw.append(kl.lower()) er+=kl break cnt+=1 val = val - torch.log(probs[idx[cnt]]) val = val/num_sub_tokens_label vali = round(val.item(), 2) # print(er) # astr = "" # for j in range(len(qw)): # mock = "" # mock+= qw[j] # if (j+2) < len(qw) and ((mock+qw[j+1]+qw[j+2]) in eng_dict): # mock +=qw[j+1] # mock +=qw[j+2] # j = j+2 # elif (j+1) < len(qw) and ((mock+qw[j+1]) in eng_dict): # mock +=qw[j+1] # j = j+1 # if len(astr) == 0: # astr+=mock # else: # astr+=mock.capitalize() er = er+" (with PLL value of: "+str(vali)+")" return er, vali def meet(X, ni): if len(ni) == 0: ni = 0 ni = int(ni) if ni == 0: print_str,vali = greet(X,ni) elif ni == -1: tot_pll = 100.00 print_str = "" fin_out = "The highest confidence prediction is: " add_out = "" for r in range(6): er, pll = greet(X, 6-r) print_str+= er print_str+='\n' if (pll - tot_pll) > 0.1 and tot_pll < 1: break elif pll >= tot_pll: continue else: add_out = er tot_pll = pll print_str= print_str+fin_out+add_out else: print_str,vali = greet(X,ni) return print_str title = "Rename a variable in a Java class" description = """This model is a fine-tuned GraphCodeBERT model fine-tuned to output higher-quality variable names for Java classes. Long classes are handled by the model. Replace any variable name with a "[MASK]" to get an identifier renaming. In the input box for the number of tokens, specify a number from 1 to 6 indicating the number of tokens in the variable name. Feel free to test multiple values. Use 0 to get a randomly sampled number. Use -1 to get the best recommendation, although this will be slower """ ex = [["""import java.io.*; public class x { public static void main(String[] args) { String f = "file.txt"; BufferedReader [MASK] = null; String l; try { [MASK] = new BufferedReader(new FileReader(f)); while ((l = [MASK].readLine()) != null) { System.out.println(l); } } catch (IOException e) { e.printStackTrace(); } finally { try { if ([MASK] != null) [MASK].close(); } catch (IOException ex) { ex.printStackTrace(); } } } }""", -1], ["""import java.net.*; import java.io.*; public class s { public static void main(String[] args) throws IOException { ServerSocket [MASK] = new ServerSocket(8000); try { Socket s = [MASK].accept(); PrintWriter pw = new PrintWriter(s.getOutputStream(), true); BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream())); String i; while ((i = br.readLine()) != null) { pw.println(i); } } finally { if ([MASK] != null) [MASK].close(); } } }""", -1], ["""import java.io.*; import java.util.*; public class y { public static void main(String[] args) { String [MASK] = "data.csv"; String l = ""; String cvsSplitBy = ","; try (BufferedReader br = new BufferedReader(new FileReader([MASK]))) { while ((l = br.readLine()) != null) { String[] z = l.split(cvsSplitBy); System.out.println("Values [field-1= " + z[0] + " , field-2=" + z[1] + "]"); } } catch (IOException e) { e.printStackTrace(); } } }""", -1]] # We instantiate the Textbox class textbox = gr.Textbox(label="Type Java code snippet:", placeholder="replace variable with [MASK]", lines=10) textbox1 = gr.Textbox(label="Number of tokens in name:", placeholder="0 for randomly sampled number of tokens and -1 for automatic number of token selection",lines=1) gr.Interface(title = title, description = description, examples = ex, fn=meet, inputs=[ textbox, textbox1 ], outputs="text").launch() # In[ ]: