File size: 9,065 Bytes
a9700a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# coding: utf-8

# In[1]:
import numpy as np

import gradio as gr
import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.nn import init, MarginRankingLoss
from torch.optim import Adam
from distutils.version import LooseVersion
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
import math
from transformers import AutoConfig, AutoModel, AutoTokenizer
import nltk
import re
import torch.optim as optim
from transformers import AutoModelForMaskedLM
import torch.nn.functional as F
import random


# In[2]:


# eng_dict = []
# with open('eng_dict.txt', 'r') as file:
#     # Read each line from the file and append it to the list
#     for line in file:
#         # Remove leading and trailing whitespace (e.g., newline characters)
#         cleaned_line = line.strip()
#         eng_dict.append(cleaned_line)


# In[14]:


def greet(X, ny):
    global eng_dict
    if ny == 0:
        rand_no = random.random()
        tok_map = {2: 0.4363429005892416,
                   1: 0.6672580202327398,
                   4: 0.7476060740459144,
                   3: 0.9618703668504087,
                   6: 0.9701028532809564,
                   7: 0.9729244545819342,
                   8: 0.9739508754144756,
                   5: 0.9994508859743607,
                   9: 0.9997507867114407,
                   10: 0.9999112969650892,
                   11: 0.9999788802297832,
                   0: 0.9999831041838266,
                   12: 0.9999873281378701,
                   22: 0.9999957760459568,
                   14: 1.0000000000000002}
        for key in tok_map.keys():
            if rand_no < tok_map[key]:
                num_sub_tokens_label = key
                break
    else:
        num_sub_tokens_label = ny
    tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
    model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
    model.load_state_dict(torch.load('model_26_2'))
    model.eval()
    X_init = X
    X_init = X_init.replace("[MASK]", " [MASK] ")
    X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label))
    tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')
    input_id_chunki = tokens['input_ids'][0].split(510)
    input_id_chunks = []
    mask_chunks  = []
    mask_chunki = tokens['attention_mask'][0].split(510)
    for tensor in input_id_chunki:
        input_id_chunks.append(tensor)
    for tensor in mask_chunki:
        mask_chunks.append(tensor)
    xi = torch.full((1,), fill_value=101)
    yi = torch.full((1,), fill_value=1)
    zi = torch.full((1,), fill_value=102)
    for r in range(len(input_id_chunks)):
        input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)
        input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)
        mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)
        mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)
    di = torch.full((1,), fill_value=0)
    for i in range(len(input_id_chunks)):
        pad_len = 512 - input_id_chunks[i].shape[0]
        if pad_len > 0:
            for p in range(pad_len):
                input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)
                mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)
    vb = torch.ones_like(input_id_chunks[0])
    fg = torch.zeros_like(input_id_chunks[0])
    maski = []
    for l in range(len(input_id_chunks)):
        masked_pos = []
        for i in range(len(input_id_chunks[l])):
            if input_id_chunks[l][i] == tokenizer.mask_token_id: #103
                if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id:
                    continue
                masked_pos.append(i)
        maski.append(masked_pos)
    input_ids = torch.stack(input_id_chunks)
    att_mask = torch.stack(mask_chunks)
    outputs = model(input_ids, attention_mask = att_mask)
    last_hidden_state = outputs[0].squeeze()
    l_o_l_sa = []
    sum_state = []
    for t in range(num_sub_tokens_label):
        c = []
        l_o_l_sa.append(c)
    if len(maski) == 1:
        masked_pos = maski[0]
        for k in masked_pos:
            for t in range(num_sub_tokens_label):
                l_o_l_sa[t].append(last_hidden_state[k+t])
    else:
        for p in range(len(maski)):
            masked_pos = maski[p]
            for k in masked_pos:
                for t in range(num_sub_tokens_label):
                    if (k+t) >= len(last_hidden_state[p]):
                        l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])])
                        continue
                    l_o_l_sa[t].append(last_hidden_state[p][k+t])
    for t in range(num_sub_tokens_label):
        sum_state.append(l_o_l_sa[t][0])
    for i in range(len(l_o_l_sa[0])):
        if i == 0:
            continue
        for t in range(num_sub_tokens_label):
            sum_state[t] = sum_state[t] + l_o_l_sa[t][i]
    yip = len(l_o_l_sa[0])
#     qw = []
    er = ""
    val = 0.0
    for t in range(num_sub_tokens_label):
        sum_state[t] /= yip
        idx = torch.topk(sum_state[t], k=5, dim=0)[1]
        probs = F.softmax(sum_state[t], dim=0)
        wor = [tokenizer.decode(i.item()).strip() for i in idx]
        cnt = 0
        for kl in wor:
            if all(char.isalpha() for char in kl):
#                 qw.append(kl.lower())
                er+=kl
                break 
            cnt+=1
        val = val - torch.log(probs[idx[cnt]])
    val = val/num_sub_tokens_label
    vali = round(val.item(), 2)
        
#     print(er)
#     astr = ""
#     for j in range(len(qw)):
#         mock = ""
#         mock+= qw[j]
#         if (j+2) < len(qw) and ((mock+qw[j+1]+qw[j+2]) in eng_dict):
#             mock +=qw[j+1]
#             mock +=qw[j+2]
#             j = j+2
#         elif (j+1) < len(qw) and ((mock+qw[j+1]) in eng_dict):
#             mock +=qw[j+1]
#             j = j+1
#         if len(astr) == 0:
#             astr+=mock
#         else:
#             astr+=mock.capitalize()     
    er = er+" (with PLL value of: "+str(vali)+")"
    return er, vali

def meet(X):
    tot_pll = 100.00
    print_str = ""
    fin_out = "The highest confidence prediction is: "
    add_out = ""
    for r in range(6):
        er, pll = greet(X, 6-r)
        print_str+= er
        print_str+='\n'
        if (pll - tot_pll) > 0.1:
            break
        elif pll >= tot_pll:
            continue
        else:
            add_out = er
            tot_pll = pll
    print_str= print_str+fin_out+add_out
    return print_str
            
title = "Rename a variable in a Java class"
description = """This model is a fine-tuned GraphCodeBERT model fine-tuned to output higher-quality variable names for Java classes. Long classes are handled by the 
model. Replace any variable name with a "[MASK]" to get an identifier renaming.
"""
ex = [["""import java.io.*;
public class x {
public static void main(String[] args) {
String f = "file.txt";
BufferedReader [MASK] = null;
String l;
try {
[MASK] = new BufferedReader(new FileReader(f));
while ((l = [MASK].readLine()) != null) {
System.out.println(l);
            }
        } catch (IOException e) {
e.printStackTrace();
        } finally {
try {
if ([MASK] != null) [MASK].close();
            } catch (IOException ex) {
ex.printStackTrace();
            }
        }
    }
}"""], ["""import java.net.*;
import java.io.*;

public class s {
    public static void main(String[] args) throws IOException {
        ServerSocket [MASK] = new ServerSocket(8000);
        try {
            Socket s = [MASK].accept();
            PrintWriter pw = new PrintWriter(s.getOutputStream(), true);
            BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream()));
            String i;
            while ((i = br.readLine()) != null) {
                pw.println(i);
            }
        } finally {
            if ([MASK] != null) [MASK].close();
        }
    }
}"""], ["""import java.io.*;
import java.util.*;

public class y {
    public static void main(String[] args) {
        String [MASK] = "data.csv";
        String l = "";
        String cvsSplitBy = ",";
        try (BufferedReader br = new BufferedReader(new FileReader([MASK]))) {
            while ((l = br.readLine()) != null) {
                String[] z = l.split(cvsSplitBy);
                System.out.println("Values [field-1= " + z[0] + " , field-2=" + z[1] + "]");
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}"""]]
# We instantiate the Textbox class
textbox = gr.Textbox(label="Type Java code snippet:", placeholder="replace variable with [MASK]", lines=10)
#textbox1 = gr.Textbox(label="Number of tokens in name:", placeholder="0 for randomly sampled number of tokens",lines=1)

gr.Interface(title = title, description = description, examples = ex, fn=meet, inputs=[
        textbox
    ], outputs="text").launch()


# In[ ]: