File size: 4,454 Bytes
3304f7d
ddc8a59
3304f7d
 
ddc8a59
 
 
b64b5e6
ddc8a59
 
 
0554219
ddc8a59
 
2b2693f
 
 
 
 
 
 
89a6b3b
ddc8a59
 
 
b64b5e6
ddc8a59
 
3304f7d
89a6b3b
ddc8a59
3304f7d
ddc8a59
3304f7d
6c04d23
33871e9
 
 
89a6b3b
 
 
 
 
 
ddc8a59
 
a1008bd
 
 
 
 
 
3304f7d
 
 
a1008bd
89a6b3b
3304f7d
ddc8a59
 
 
 
3304f7d
 
 
 
 
 
 
 
89a6b3b
3304f7d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr

from convert import run_conversion
from hub_utils import push_to_hub, save_model_card

PRETRAINED_CKPT = "CompVis/stable-diffusion-v1-4"
DESCRIPTION = """
This Space lets you convert KerasCV Stable Diffusion weights to a format compatible with [Diffusers](https://github.com/huggingface/diffusers) 🧨. This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like [schedulers](https://huggingface.co./docs/diffusers/main/en/using-diffusers/schedulers), [fast attention](https://huggingface.co./docs/diffusers/optimization/fp16), etc.). Specifically, the Keras weights are first converted to PyTorch and then they are wrapped into a [`StableDiffusionPipeline`](https://huggingface.co./docs/diffusers/api/pipelines/stable_diffusion/overview). This pipeline is then pushed to the Hugging Face Hub given you have provided `your_hf_token`.

## Notes (important)

* The Space downloads a couple of pre-trained weights and runs a dummy inference. Depending, on the machine type, the enture process can take anywhere between 2 - 5 minutes.
* Only Stable Diffusion (v1) is supported as of now. In particular this checkpoint: [`"CompVis/stable-diffusion-v1-4"`](https://huggingface.co./CompVis/stable-diffusion-v1-4).
* [This Colab Notebook](https://colab.research.google.com/drive/1RYY077IQbAJldg8FkK8HSEpNILKHEwLb?usp=sharing) was used to develop the conversion utilities initially.
* Providing both `text_encoder_weights` and `unet_weights` is dependent on the fine-tuning task. Here are some _typical_ scenarios:
    
    * [DreamBooth](https://dreambooth.github.io/): Both text encoder and UNet
    * [Textual Inversion](https://textual-inversion.github.io/): Text encoder
    * [Traditional text2image fine-tuning](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image): UNet
    
    **In case none of the `text_encoder_weights` and `unet_weights` is provided, nothing will be done.**
* For Textual Inversion, you MUST provide a valid `placeholder_token` i.e., the text concept used for conducting Textual Inversion.
* When providing the weights' links, ensure they're directly downloadable. Internally, the Space uses [`tf.keras.utils.get_file()`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/get_file) to retrieve the weights locally. 
* If you don't provide `your_hf_token` the converted pipeline won't be pushed. 

Check [here](https://github.com/huggingface/diffusers/blob/31be42209ddfdb69d9640a777b32e9b5c6259bf0/examples/dreambooth/train_dreambooth_lora.py#L975) for an example on how you can change the scheduler of an already initialized `StableDiffusionPipeline`.
"""


def run(hf_token, text_encoder_weights, unet_weights, placeholder_token, repo_prefix):
    if text_encoder_weights == "":
        text_encoder_weights = None
    if unet_weights == "":
        unet_weights = None

    if text_encoder_weights is None and unet_weights is None:
        return "❌ No fine-tuned weights provided, nothing to do."

    if placeholder_token == "":
        placeholder_token = None
    if placeholder_token is not None and text_encoder_weights is None:
        return "❌ Placeholder token provided but no text encoder weights were provided. Cannot proceed."

    pipeline = run_conversion(text_encoder_weights, unet_weights, placeholder_token)
    output_path = "kerascv_sd_diffusers_pipeline"
    pipeline.save_pretrained(output_path)

    weight_paths = []
    if text_encoder_weights is not None:
        weight_paths.append(text_encoder_weights)
    if unet_weights is not None:
        weight_paths.append(unet_weights)
    save_model_card(
        base_model=PRETRAINED_CKPT,
        repo_folder=output_path,
        weight_paths=weight_paths,
        placeholder_token=placeholder_token,
    )
    push_str = push_to_hub(hf_token, output_path, repo_prefix)
    return push_str


demo = gr.Interface(
    title="KerasCV Stable Diffusion to Diffusers Stable Diffusion Pipelines 🧨🤗",
    description=DESCRIPTION,
    allow_flagging="never",
    inputs=[
        gr.Text(max_lines=1, label="your_hf_token"),
        gr.Text(max_lines=1, label="text_encoder_weights"),
        gr.Text(max_lines=1, label="unet_weights"),
        gr.Text(max_lines=1, label="placeholder_token"),
        gr.Text(max_lines=1, label="output_repo_prefix"),
    ],
    outputs=[gr.Markdown(label="output")],
    fn=run,
)

demo.launch()