Spaces:
Running
Running
saswatdas123
commited on
Upload 6 files
Browse files- pages/ChatPDF_Ingestion.py +52 -0
- pages/ChatPDF_Reader.py +64 -0
- pages/Intelligent Chatbot.py +41 -0
- pages/Patent_Ingestion.py +84 -0
- pages/Patent_Search.py +109 -0
- pages/Prompt_Engineer.py +85 -0
pages/ChatPDF_Ingestion.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# File Selection Drop Down
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain_community.document_loaders import UnstructuredFileLoader, DirectoryLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.llms import HuggingFaceHub
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain_community.vectorstores import Chroma
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
import sys,yaml,Utilities as ut
|
14 |
+
|
15 |
+
|
16 |
+
st.set_page_config(page_title="ChatPDF Ingestion", page_icon="📈")
|
17 |
+
|
18 |
+
def load_pdf():
|
19 |
+
|
20 |
+
# Load the pdf file and split it into smaller chunks
|
21 |
+
initdict={}
|
22 |
+
initdict = ut.get_tokens()
|
23 |
+
hf_token = initdict["hf_token"]
|
24 |
+
embedding_model_id = initdict["embedding_model"]
|
25 |
+
chromadbpath = initdict["chatPDF_chroma_db"]
|
26 |
+
|
27 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_id)
|
28 |
+
|
29 |
+
loader = DirectoryLoader('data/', glob="**/*.pdf", show_progress=True, loader_cls=UnstructuredFileLoader)
|
30 |
+
|
31 |
+
documents = loader.load()
|
32 |
+
#print (len(documents))
|
33 |
+
|
34 |
+
# Split the documents into smaller chunks
|
35 |
+
|
36 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=70)
|
37 |
+
texts = text_splitter.split_documents(documents)
|
38 |
+
|
39 |
+
#Using Chroma vector database to store and retrieve embeddings of our text
|
40 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=chromadbpath)
|
41 |
+
return db
|
42 |
+
|
43 |
+
st.title("PatentGuru - Document Ingestion ")
|
44 |
+
# Main chat form
|
45 |
+
with st.form("chat_form"):
|
46 |
+
#query = st.text_input("You: ")
|
47 |
+
submit_button = st.form_submit_button("Upload..")
|
48 |
+
|
49 |
+
if submit_button:
|
50 |
+
load_pdf()
|
51 |
+
|
52 |
+
st.write ("Uploaded successfully")
|
pages/ChatPDF_Reader.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import required libraries
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.llms import HuggingFaceHub
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
#from langchain.text_splitter import NLTKTextSplitter
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
import sys,yaml,Utilities as ut
|
14 |
+
|
15 |
+
def get_data(query):
|
16 |
+
chat_history = []
|
17 |
+
initdict={}
|
18 |
+
initdict = ut.get_tokens()
|
19 |
+
hf_token = initdict["hf_token"]
|
20 |
+
embedding_model_id = initdict["embedding_model"]
|
21 |
+
chromadbpath = initdict["chatPDF_chroma_db"]
|
22 |
+
llm_repo_id = initdict["llm_repoid"]
|
23 |
+
|
24 |
+
|
25 |
+
# We will use HuggingFace embeddings
|
26 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_id)
|
27 |
+
|
28 |
+
#retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})
|
29 |
+
# load from disk
|
30 |
+
db = Chroma(persist_directory=chromadbpath, embedding_function=embeddings)
|
31 |
+
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 2})
|
32 |
+
|
33 |
+
llm = HuggingFaceHub(huggingfacehub_api_token=hf_token,
|
34 |
+
repo_id=llm_repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
|
35 |
+
|
36 |
+
# Create the Conversational Retrieval Chain
|
37 |
+
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever,return_source_documents=True)
|
38 |
+
result = qa_chain({'question': query, 'chat_history': chat_history})
|
39 |
+
chat_history.append(result)
|
40 |
+
print('Answer: ' + result['answer'] + '\n')
|
41 |
+
print (result)
|
42 |
+
return result['answer']
|
43 |
+
|
44 |
+
st.title("PatentGuru Document Reader")
|
45 |
+
|
46 |
+
# Main chat form
|
47 |
+
with st.form("chat_form"):
|
48 |
+
query = st.text_input("Chat with PDF: ")
|
49 |
+
clear_history = st.checkbox('Clear Chat History')
|
50 |
+
submit_button = st.form_submit_button("Send")
|
51 |
+
|
52 |
+
if submit_button:
|
53 |
+
if clear_history:
|
54 |
+
st.write("Cleared previous chat history")
|
55 |
+
|
56 |
+
response = get_data(query)
|
57 |
+
if len(response)>0:
|
58 |
+
response = str(response.partition("Answer: ")[-1])
|
59 |
+
else: response = "No results"
|
60 |
+
|
61 |
+
# write results
|
62 |
+
st.write (response)
|
63 |
+
|
64 |
+
|
pages/Intelligent Chatbot.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
2 |
+
import streamlit as st, Utilities as ut
|
3 |
+
from langchain import hub
|
4 |
+
from langchain.agents import AgentExecutor, create_react_agent, load_tools
|
5 |
+
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
6 |
+
#from langchain_openai import OpenAI
|
7 |
+
|
8 |
+
from langchain_community.callbacks.streamlit import (
|
9 |
+
StreamlitCallbackHandler,
|
10 |
+
)
|
11 |
+
|
12 |
+
st_callback = StreamlitCallbackHandler(st.container())
|
13 |
+
|
14 |
+
initdict={}
|
15 |
+
initdict = ut.get_tokens()
|
16 |
+
hf_token = initdict["hf_token"]
|
17 |
+
reactstyle_prompt = initdict["reactstyle_prompt"]
|
18 |
+
serpapi_api_key = initdict["serpapi_api_key"]
|
19 |
+
llm_repoid = initdict["llm_repoid"]
|
20 |
+
|
21 |
+
llm = HuggingFaceEndpoint(repo_id=llm_repoid,huggingfacehub_api_token=hf_token,temperature=0.9,verbose=True)
|
22 |
+
|
23 |
+
tools = load_tools(["serpapi"],llm=llm,serpapi_api_key=serpapi_api_key)
|
24 |
+
prompt = hub.pull(reactstyle_prompt)
|
25 |
+
agent = create_react_agent(llm, tools, prompt)
|
26 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True)
|
27 |
+
|
28 |
+
chat_model = ChatHuggingFace(llm=llm)
|
29 |
+
chat_model_with_stop = chat_model.bind(stop=["\nObservation"])
|
30 |
+
|
31 |
+
st.title("PatentGuru - Intelligent Chatbot")
|
32 |
+
|
33 |
+
if prompt := st.chat_input():
|
34 |
+
st.chat_message("user").write(prompt)
|
35 |
+
with st.chat_message("assistant"):
|
36 |
+
st_callback = StreamlitCallbackHandler(st.container())
|
37 |
+
|
38 |
+
response = agent_executor.invoke(
|
39 |
+
{"input": prompt}, {"callbacks": [st_callback], "handle_parsing_errors":True}
|
40 |
+
)
|
41 |
+
st.write(response["output"])
|
pages/Patent_Ingestion.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import required libraries
|
2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.llms import HuggingFaceHub
|
4 |
+
#from langchain.vectorstores import Chroma
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
import tensorflow_datasets as tfds
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from datasets import load_dataset
|
9 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
10 |
+
import textwrap
|
11 |
+
import chromadb
|
12 |
+
import streamlit as st
|
13 |
+
import sys,yaml
|
14 |
+
import uuid
|
15 |
+
import Utilities as ut
|
16 |
+
|
17 |
+
|
18 |
+
def text_summarizer(text):
|
19 |
+
initdict = ut.get_tokens()
|
20 |
+
BART_Model_Name = initdict["BART_model"]
|
21 |
+
#model_name = "facebook/bart-large-cnn"
|
22 |
+
model = BartForConditionalGeneration.from_pretrained(BART_Model_Name)
|
23 |
+
tokenizer = BartTokenizer.from_pretrained(BART_Model_Name)
|
24 |
+
|
25 |
+
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
|
26 |
+
summary_ids = model.generate(inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
|
27 |
+
|
28 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
29 |
+
formatted_summary = "\n".join(textwrap.wrap(summary, width=80))
|
30 |
+
|
31 |
+
return formatted_summary
|
32 |
+
|
33 |
+
def load_patentBIGdata():
|
34 |
+
|
35 |
+
initdict={}
|
36 |
+
initdict = ut.get_tokens()
|
37 |
+
|
38 |
+
embedding_model_id = initdict["embedding_model"]
|
39 |
+
chromadbpath = initdict["dataset_chroma_db"]
|
40 |
+
chromadbcollname = initdict["dataset_chroma_db_collection_name"]
|
41 |
+
|
42 |
+
embedding_model = SentenceTransformer(embedding_model_id)
|
43 |
+
|
44 |
+
chroma_client = chromadb.PersistentClient(path= chromadbpath)
|
45 |
+
|
46 |
+
collection = chroma_client.get_or_create_collection(name=chromadbcollname)
|
47 |
+
|
48 |
+
|
49 |
+
# Load the Big patent dataset
|
50 |
+
ds = load_dataset("big_patent", "a", split="validation[:1%]",trust_remote_code=True)
|
51 |
+
|
52 |
+
for record in ds.take(10):
|
53 |
+
abstract, desc = record ["abstract"], record["description"]
|
54 |
+
# Summarize to 150 words
|
55 |
+
abstract = text_summarizer(abstract)
|
56 |
+
textembeddings = embedding_model.encode(abstract).tolist()
|
57 |
+
|
58 |
+
genguid=str(uuid.uuid4())
|
59 |
+
#take 8 characters
|
60 |
+
uniqueid = genguid[:8]
|
61 |
+
# Now we will store the expert explanation field of first 10 questions from dataset into collection.
|
62 |
+
collection.add(
|
63 |
+
documents=[
|
64 |
+
abstract
|
65 |
+
],
|
66 |
+
embeddings=[textembeddings],
|
67 |
+
ids=[uniqueid]
|
68 |
+
)
|
69 |
+
#print(abstract)
|
70 |
+
|
71 |
+
st.title("Patent Ingestion - BIG Patent")
|
72 |
+
|
73 |
+
# Main chat form
|
74 |
+
with st.form("chat_form"):
|
75 |
+
|
76 |
+
submit_button = st.form_submit_button("Upload BIG Patent data...")
|
77 |
+
|
78 |
+
if submit_button:
|
79 |
+
load_patentBIGdata()
|
80 |
+
response = "BIG Patent dataset was successfully loaded"
|
81 |
+
|
82 |
+
st.write (response)
|
83 |
+
|
84 |
+
|
pages/Patent_Search.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import required libraries
|
2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.llms import HuggingFaceHub
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
7 |
+
from langchain import PromptTemplate
|
8 |
+
|
9 |
+
import streamlit as st
|
10 |
+
import sys,yaml
|
11 |
+
import chromadb
|
12 |
+
import Utilities as ut
|
13 |
+
|
14 |
+
hf_token=""
|
15 |
+
chromadbpath=""
|
16 |
+
chromadbcollname=""
|
17 |
+
embedding_model_id=""
|
18 |
+
llm_repo_id=""
|
19 |
+
#embeddings=None
|
20 |
+
#chroma_client=None
|
21 |
+
|
22 |
+
|
23 |
+
def filterdistance(distcoll):
|
24 |
+
myemptydict={}
|
25 |
+
if len(distcoll) < 0:myemptydict
|
26 |
+
for distances in distcoll['distances']:
|
27 |
+
for distance in distances:
|
28 |
+
if distance<50: return distcoll
|
29 |
+
else: return myemptydict
|
30 |
+
|
31 |
+
def get_collections(query):
|
32 |
+
#myemptydict={}
|
33 |
+
result=""
|
34 |
+
initdict={}
|
35 |
+
initdict = ut.get_tokens()
|
36 |
+
hf_token = initdict["hf_token"]
|
37 |
+
embedding_model_id = initdict["embedding_model"]
|
38 |
+
chromadbpath = initdict["dataset_chroma_db"]
|
39 |
+
chromadbcollname = initdict["dataset_chroma_db_collection_name"]
|
40 |
+
llm_repo_id = initdict["llm_repoid"]
|
41 |
+
|
42 |
+
embedding_model = SentenceTransformer(embedding_model_id)
|
43 |
+
#print(chromadbpath)
|
44 |
+
#print(chromadbcollname)
|
45 |
+
chroma_client = chromadb.PersistentClient(path = chromadbpath)
|
46 |
+
collection = chroma_client.get_collection(name = chromadbcollname)
|
47 |
+
|
48 |
+
#collection = chroma_client.get_or_create_collection(name=chromadbcollname)
|
49 |
+
query_vector = embedding_model.encode(query).tolist()
|
50 |
+
output = collection.query(
|
51 |
+
query_embeddings=[query_vector],
|
52 |
+
n_results=1,
|
53 |
+
#where={"distances": "is_less_than_1"},
|
54 |
+
include=['documents','distances'],
|
55 |
+
|
56 |
+
)
|
57 |
+
#Filter for distances
|
58 |
+
output = filterdistance(output)
|
59 |
+
|
60 |
+
if len(output)>0:
|
61 |
+
template = """
|
62 |
+
<s>[INST] <<SYS>>
|
63 |
+
Act as a patent assistant who is helping summarize and neatly format the results for better readability. Ensure the output is gramatically correct and easily understandable
|
64 |
+
<</SYS>>
|
65 |
+
|
66 |
+
{text} [/INST]
|
67 |
+
"""
|
68 |
+
#Build the prompt template
|
69 |
+
prompt = PromptTemplate(
|
70 |
+
input_variables=["text"],
|
71 |
+
template=template,
|
72 |
+
)
|
73 |
+
text = output
|
74 |
+
|
75 |
+
llm = HuggingFaceHub(huggingfacehub_api_token=hf_token,
|
76 |
+
repo_id=llm_repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
|
77 |
+
|
78 |
+
result = llm.invoke(prompt.format(text=text))
|
79 |
+
print (result)
|
80 |
+
return result
|
81 |
+
|
82 |
+
return output
|
83 |
+
# extract and apply distance condition
|
84 |
+
|
85 |
+
st.title("BIG Patent Search")
|
86 |
+
|
87 |
+
# Main chat form
|
88 |
+
with st.form("chat_form"):
|
89 |
+
query = st.text_input("Enter the abstract search for similar patents: ")
|
90 |
+
#LLM_Summary = st.checkbox('Summarize results with LLM')
|
91 |
+
submit_button = st.form_submit_button("Send")
|
92 |
+
|
93 |
+
if submit_button:
|
94 |
+
st.write("Fetching results..\n")
|
95 |
+
results = get_collections(query)
|
96 |
+
|
97 |
+
if len(results)>0:
|
98 |
+
#docids = results["documents"]
|
99 |
+
response = "There are existing patents related to - "
|
100 |
+
substring = results.partition("[/ASSistant]")[-1]
|
101 |
+
if len(substring)>0:
|
102 |
+
response = response + str(substring)
|
103 |
+
else:
|
104 |
+
response = response + results.partition("[/INST]")[-1]
|
105 |
+
|
106 |
+
else: response = "No results"
|
107 |
+
|
108 |
+
st.write (response)
|
109 |
+
|
pages/Prompt_Engineer.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from langchain.callbacks.manager import CallbackManager
|
3 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
4 |
+
from langchain import PromptTemplate
|
5 |
+
from langchain_community.llms import LlamaCpp
|
6 |
+
#from langchain.chains import RetrievalQA
|
7 |
+
#from langchain_community.embeddings import SentenceTransformerEmbeddings
|
8 |
+
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
11 |
+
|
12 |
+
#from langchain.schema import HumanMessage
|
13 |
+
|
14 |
+
import os
|
15 |
+
import json,streamlit as st
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
class StreamHandler(BaseCallbackHandler):
|
19 |
+
def __init__(self, container, initial_text=""):
|
20 |
+
self.container = container
|
21 |
+
self.text=initial_text
|
22 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
23 |
+
# "/" is a marker to show difference
|
24 |
+
# you don't need it
|
25 |
+
#self.text+=token+"/"
|
26 |
+
self.text+=token
|
27 |
+
self.container.markdown(self.text)
|
28 |
+
|
29 |
+
st.title("Prompt Engineer")
|
30 |
+
|
31 |
+
# Main chat form
|
32 |
+
with st.form("chat_form"):
|
33 |
+
query = st.text_input("Enter the topic you want to generate prompt for?: ")
|
34 |
+
#LLM_Summary = st.checkbox('Summarize results with LLM')
|
35 |
+
submit_button = st.form_submit_button("Send")
|
36 |
+
|
37 |
+
|
38 |
+
template = """
|
39 |
+
<s>[INST] <<SYS>>
|
40 |
+
Act as a patent advisor by providing subject matter expertise on any topic. Provide detailed and elaborate answers
|
41 |
+
<</SYS>>
|
42 |
+
|
43 |
+
{text} [/INST]
|
44 |
+
"""
|
45 |
+
response=""
|
46 |
+
prompt = PromptTemplate(
|
47 |
+
input_variables=["text"],
|
48 |
+
template=template,
|
49 |
+
)
|
50 |
+
text = "Help me create a good prompt for the following: Information that is needed to file a US patent application for " + query
|
51 |
+
#print(prompt.format(text=query))
|
52 |
+
|
53 |
+
# Callbacks support token-wise streaming
|
54 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
55 |
+
|
56 |
+
#model_path = "C:\Rajesh\AI-ML-Training\LLM\llama-2-7b.Q4_K_M.gguf"\
|
57 |
+
model_path = "C:\Rajesh\AI-ML-Training\LLM\zephyr-7b-beta.Q5_K_S.gguf"
|
58 |
+
chat_box=st.empty()
|
59 |
+
stream_handler = StreamHandler(chat_box)
|
60 |
+
|
61 |
+
llm = LlamaCpp(
|
62 |
+
model_path=model_path,
|
63 |
+
temperature=0.8,
|
64 |
+
max_tokens=500,
|
65 |
+
top_p=1,
|
66 |
+
#streaming=True,
|
67 |
+
#callback_manager=callback_manager,
|
68 |
+
callback_manager = [stream_handler],
|
69 |
+
verbose=True, # Verbose is required to pass to the callback manager
|
70 |
+
)
|
71 |
+
|
72 |
+
if submit_button:
|
73 |
+
#st.write("Fetching results..\n")
|
74 |
+
output = llm.invoke(prompt.format(text=text))
|
75 |
+
#response = response+output
|
76 |
+
#st.write(response)
|
77 |
+
#response = output([HumanMessage(content=query)])
|
78 |
+
#llm_response = output.content
|
79 |
+
#st.markdown(output)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|