from __future__ import annotations from collections.abc import Generator from pathlib import Path import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim from sklearn.model_selection import ( GroupKFold, KFold, StratifiedGroupKFold, StratifiedKFold, ) from utmosv2.loss import CombinedLoss, PairwizeDiffLoss def split_data( cfg, data: pd.DataFrame ) -> Generator[tuple[np.ndarray, np.ndarray], None, None]: if cfg.print_config: print(f"Using split: {cfg.split.type}") if cfg.split.type == "simple": kf = KFold(n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed) for train_idx, valid_idx in kf.split(data): yield train_idx, valid_idx elif cfg.split.type == "stratified": kf = StratifiedKFold( n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed ) for train_idx, valid_idx in kf.split(data, data[cfg.split.target].astype(int)): yield train_idx, valid_idx elif cfg.split.type == "group": kf = GroupKFold(n_splits=cfg.num_folds) for train_idx, valid_idx in kf.split(data, groups=data[cfg.split.group]): yield train_idx, valid_idx elif cfg.split.type == "stratified_group": kf = StratifiedGroupKFold( n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed ) for train_idx, valid_idx in kf.split( data, data[cfg.split.target].astype(int), groups=data[cfg.split.group] ): yield train_idx, valid_idx elif cfg.split.type == "sgkf_kind": kind = data[cfg.split.kind].unique() kf = [ StratifiedGroupKFold( n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed ) for _ in range(len(kind)) ] kf = [ kf_i.split( data[data[cfg.split.kind] == ds], data[data[cfg.split.kind] == ds][cfg.split.target].astype(int), groups=data[data[cfg.split.kind] == ds][cfg.split.group], ) for kf_i, ds in zip(kf, kind) ] for ds_idx in zip(*kf): train_idx = np.concatenate([d[0] for d in ds_idx]) valid_idx = np.concatenate([d[1] for d in ds_idx]) yield train_idx, valid_idx else: raise NotImplementedError def get_dataloader( cfg, dataset: torch.utils.data.Dataset, phase: str ) -> torch.utils.data.DataLoader: if phase == "train": return torch.utils.data.DataLoader( dataset, batch_size=cfg.batch_size, shuffle=True, num_workers=cfg.num_workers, pin_memory=True, ) elif phase == "valid": return torch.utils.data.DataLoader( dataset, batch_size=cfg.batch_size, shuffle=False, num_workers=cfg.num_workers, pin_memory=True, ) elif phase == "test": return torch.utils.data.DataLoader( dataset, batch_size=cfg.inference.batch_size, shuffle=False, num_workers=cfg.num_workers, pin_memory=True, ) else: raise ValueError(f"Phase must be one of [train, valid, test], but got {phase}") def _get_unit_loss(loss_cfg) -> nn.Module: if loss_cfg.name == "pairwize_diff": return PairwizeDiffLoss(loss_cfg.margin, loss_cfg.norm) elif loss_cfg.name == "mse": return nn.MSELoss() else: raise NotImplementedError def _get_combined_loss(cfg) -> nn.Module: if cfg.print_config: print( "Using losses: " + ", ".join([f"{loss_cfg.name} ({w})" for loss_cfg, w in cfg.loss]) ) weighted_losses = [(_get_unit_loss(loss_cfg), w) for loss_cfg, w in cfg.loss] return CombinedLoss(weighted_losses) def get_loss(cfg) -> nn.Module: if isinstance(cfg.loss, list): return _get_combined_loss(cfg) else: return _get_unit_loss(cfg.loss) def get_optimizer(cfg, model: nn.Module) -> optim.Optimizer: if cfg.print_config: print(f"Using optimizer: {cfg.optimizer.name}") if cfg.optimizer.name == "adam": return optim.Adam(model.parameters(), lr=cfg.optimizer.lr) elif cfg.optimizer.name == "adamw": return optim.AdamW( model.parameters(), lr=cfg.optimizer.lr, weight_decay=cfg.optimizer.weight_decay, ) elif cfg.optimizer.name == "sgd": return optim.SGD( model.parameters(), lr=cfg.optimizer.lr, weight_decay=cfg.optimizer.weight_decay, ) else: raise NotImplementedError def get_scheduler( cfg, optimizer: optim.Optimizer, n_iterations: int ) -> optim.lr_scheduler._LRScheduler: if cfg.print_config: print(f"Using scheduler: {cfg.scheduler}") if cfg.scheduler is None: return optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1) if cfg.scheduler.name == "cosine": return optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=cfg.scheduler.T_max or n_iterations, eta_min=cfg.scheduler.eta_min, ) else: raise NotImplementedError def print_metrics(metrics: dict[str, float]): print(", ".join([f"{k}: {v:.4f}" for k, v in metrics.items()])) def save_oof_preds(cfg, data: pd.DataFrame, oof_preds: np.ndarray, fold: int): oof_df = pd.DataFrame({cfg.id_name: data[cfg.id_name], "oof_preds": oof_preds}) oof_df.to_csv( cfg.save_path / f"fold{fold}_s{cfg.split.seed}_oof_preds.csv", index=False ) def configure_args(cfg, args): cfg.fold = args.fold cfg.split.seed = args.seed cfg.config_name = args.config cfg.input_dir = args.input_dir and Path(args.input_dir) cfg.num_workers = args.num_workers cfg.weight = args.weight cfg.save_path = Path("models") / cfg.config_name cfg.wandb = args.wandb cfg.reproduce = args.reproduce cfg.data_config = args.data_config cfg.phase = "train" def configure_inference_args(cfg, args): cfg.inference.fold = args.fold cfg.split.seed = args.seed cfg.config_name = args.config cfg.input_dir = args.input_dir and Path(args.input_dir) cfg.input_path = args.input_path and Path(args.input_path) cfg.num_workers = args.num_workers cfg.weight = args.weight cfg.inference.val_list_path = args.val_list_path and Path(args.val_list_path) cfg.save_path = Path("models") / cfg.config_name cfg.predict_dataset = args.predict_dataset cfg.final = args.final cfg.inference.num_tta = args.num_repetitions cfg.reproduce = args.reproduce cfg.out_path = args.out_path and Path(args.out_path) cfg.data_config = None cfg.phase = "inference"