File size: 7,912 Bytes
b55d767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import annotations

import glob
import json
import os
from collections.abc import Callable
from pathlib import Path

import numpy as np
import pandas as pd
import scipy.stats
import torch
import torch.nn as nn

from utmosv2.dataset import (
    MultiSpecDataset,
    MultiSpecExtDataset,
    SSLDataset,
    SSLExtDataset,
    SSLLMultiSpecExtDataset,
)
from utmosv2.model import (
    MultiSpecExtModel,
    MultiSpecModelV2,
    SSLExtModel,
    SSLMultiSpecExtModelV1,
    SSLMultiSpecExtModelV2,
)
from utmosv2.preprocess import add_sys_mean, preprocess, preprocess_test


def get_data(cfg) -> pd.DataFrame:
    train_mos_list = pd.read_csv(cfg.input_dir / "sets/train_mos_list.txt", header=None)
    val_mos_list = pd.read_csv(cfg.input_dir / "sets/val_mos_list.txt", header=None)
    test_mos_list = pd.read_csv(cfg.input_dir / "sets/test_mos_list.txt", header=None)
    data = pd.concat([train_mos_list, val_mos_list, test_mos_list], axis=0)
    data.columns = ["utt_id", "mos"]
    data["file_path"] = data["utt_id"].apply(lambda x: cfg.input_dir / f"wav/{x}")
    return data


def get_dataset(cfg, data: pd.DataFrame, phase: str) -> torch.utils.data.Dataset:
    if cfg.print_config:
        print(f"Using dataset: {cfg.dataset.name}")
    if cfg.dataset.name == "multi_spec":
        res = MultiSpecDataset(cfg, data, phase, cfg.transform)
    elif cfg.dataset.name == "ssl":
        res = SSLDataset(cfg, data, phase)
    elif cfg.dataset.name == "sslext":
        res = SSLExtDataset(cfg, data, phase)
    elif cfg.dataset.name == "ssl_multispec_ext":
        res = SSLLMultiSpecExtDataset(cfg, data, phase, cfg.transform)
    elif cfg.dataset.name == "multi_spec_ext":
        res = MultiSpecExtDataset(cfg, data, phase, cfg.transform)
    else:
        raise NotImplementedError
    return res


def get_model(cfg, device: torch.device) -> nn.Module:
    if cfg.print_config:
        print(f"Using model: {cfg.model.name}")
    if cfg.model.name == "multi_specv2":
        model = MultiSpecModelV2(cfg)
    elif cfg.model.name == "sslext":
        model = SSLExtModel(cfg)
    elif cfg.model.name == "multi_spec_ext":
        model = MultiSpecExtModel(cfg)
    elif cfg.model.name == "ssl_multispec_ext":
        model = SSLMultiSpecExtModelV1(cfg)
    elif cfg.model.name == "ssl_multispec_ext_v2":
        model = SSLMultiSpecExtModelV2(cfg)
    else:
        raise NotImplementedError
    model = model.to(device)
    if cfg.weight is not None:
        model.load_state_dict(torch.load(cfg.weight))
    return model


def get_metrics() -> dict[str, Callable[[np.ndarray, np.ndarray], float]]:
    return {
        "mse": lambda x, y: np.mean((x - y) ** 2),
        "lcc": lambda x, y: np.corrcoef(x, y)[0][1],
        "srcc": lambda x, y: scipy.stats.spearmanr(x, y)[0],
        "ktau": lambda x, y: scipy.stats.kendalltau(x, y)[0],
    }


def calc_metrics(data: pd.DataFrame, preds: np.ndarray) -> dict[str, float]:
    data = data.copy()
    data["preds"] = preds
    data_sys = data.groupby("sys_id", as_index=False)[["mos", "preds"]].mean()
    res = {}
    for name, d in {"utt": data, "sys": data_sys}.items():
        res[f"{name}_mse"] = np.mean((d["mos"].values - d["preds"].values) ** 2)
        res[f"{name}_lcc"] = np.corrcoef(d["mos"].values, d["preds"].values)[0][1]
        res[f"{name}_srcc"] = scipy.stats.spearmanr(d["mos"].values, d["preds"].values)[
            0
        ]
        res[f"{name}_ktau"] = scipy.stats.kendalltau(
            d["mos"].values, d["preds"].values
        )[0]
    return res


def configure_defaults(cfg):
    if cfg.id_name is None:
        cfg.id_name = "utt_id"


def _get_testdata(cfg, data: pd.DataFrame) -> pd.DataFrame:
    with open(cfg.inference.val_list_path, "r") as f:
        val_lists = [s.replace("\n", "") + ".wav" for s in f.readlines()]
    test_data = data[data["utt_id"].isin(set(val_lists))]
    return test_data


def get_inference_data(cfg) -> pd.DataFrame:
    if cfg.reproduce:
        data = get_data(cfg)
        data = preprocess_test(cfg, data)
        data = _get_testdata(cfg, data)
    else:
        if cfg.input_dir:
            files = sorted(glob.glob(str(cfg.input_dir / "*.wav")))
            data = pd.DataFrame({"file_path": files})
        else:
            data = pd.DataFrame({"file_path": [cfg.input_path.as_posix()]})
        data["utt_id"] = data["file_path"].apply(
            lambda x: x.split("/")[-1].replace(".wav", "")
        )
        data["sys_id"] = data["utt_id"].apply(lambda x: x.split("-")[0])
        if cfg.inference.val_list_path:
            with open(cfg.inference.val_list_path, "r") as f:
                val_lists = [s.replace(".wav", "") for s in f.read().splitlines()]
                print(val_lists)
            data = data[data["utt_id"].isin(set(val_lists))]
        data["dataset"] = cfg.predict_dataset
        data["mos"] = 0
    return data


def get_train_data(cfg) -> pd.DataFrame:
    if cfg.reproduce:
        data = get_data(cfg)
        data = preprocess(cfg, data)
    else:
        with open(cfg.data_config, "r") as f:
            datasets = json.load(f)
        data = []
        for dt in datasets["data"]:
            files = sorted(glob.glob(str(Path(dt["dir"]) / "*.wav")))
            d = pd.DataFrame({"file_path": files})
            d["dataset"] = dt["name"]
            d["utt_id"] = d["file_path"].apply(
                lambda x: x.split("/")[-1].replace(".wav", "")
            )
            mos_list = pd.read_csv(dt["mos_list"], header=None)
            mos_list.columns = ["utt_id", "mos"]
            mos_list["utt_id"] = mos_list["utt_id"].apply(
                lambda x: x.replace(".wav", "")
            )
            d = d.merge(mos_list, on="utt_id", how="inner")
            d["sys_id"] = d["utt_id"].apply(lambda x: x.split("-")[0])
            add_sys_mean(d)
            data.append(d)
        data = pd.concat(data, axis=0)

    return data


def show_inference_data(data: pd.DataFrame):
    print(
        data[[c for c in data.columns if c != "mos"]]
        .rename(columns={"dataset": "predict_dataset"})
        .head()
    )


def _get_test_save_name(cfg) -> str:
    return f"{cfg.config_name}_[fold{cfg.inference.fold}_tta{cfg.inference.num_tta}_s{cfg.split.seed}]"


def save_test_preds(
    cfg, data: pd.DataFrame, test_preds: np.ndarray, test_metrics: dict[str, float]
):
    test_df = pd.DataFrame({cfg.id_name: data[cfg.id_name], "test_preds": test_preds})
    save_path = (
        cfg.inference.save_path
        / f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})_test_preds{'_final' if cfg.final else ''}.csv",
    )
    test_df.to_csv(save_path, index=False)
    save_path = (
        cfg.inference.save_path
        / f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})_val_score{'_final' if cfg.final else ''}.json",
    )
    with open(save_path, "w") as f:
        json.dump(test_metrics, f)
    print(f"Test predictions are saved to {save_path}")


def make_submission_file(cfg, data: pd.DataFrame, test_preds: np.ndarray):
    submit = pd.DataFrame({cfg.id_name: data[cfg.id_name], "prediction": test_preds})
    os.makedirs(
        cfg.inference.submit_save_path
        / f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})",
        exist_ok=True,
    )
    sub_file = (
        cfg.inference.submit_save_path
        / f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})"
        / "answer.txt"
    )
    submit.to_csv(
        sub_file,
        index=False,
        header=False,
    )
    print(f"Submission file is saved to {sub_file}")


def save_preds(cfg, data: pd.DataFrame, test_preds: np.ndarray):
    pred = pd.DataFrame({cfg.id_name: data[cfg.id_name], "mos": test_preds})
    if cfg.out_path is None:
        print("Predictions:")
        print(pred)
    else:
        pred.to_csv(cfg.out_path, index=False)
        print(f"Predictions are saved to {cfg.out_path}")