Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,912 Bytes
b55d767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from __future__ import annotations
import glob
import json
import os
from collections.abc import Callable
from pathlib import Path
import numpy as np
import pandas as pd
import scipy.stats
import torch
import torch.nn as nn
from utmosv2.dataset import (
MultiSpecDataset,
MultiSpecExtDataset,
SSLDataset,
SSLExtDataset,
SSLLMultiSpecExtDataset,
)
from utmosv2.model import (
MultiSpecExtModel,
MultiSpecModelV2,
SSLExtModel,
SSLMultiSpecExtModelV1,
SSLMultiSpecExtModelV2,
)
from utmosv2.preprocess import add_sys_mean, preprocess, preprocess_test
def get_data(cfg) -> pd.DataFrame:
train_mos_list = pd.read_csv(cfg.input_dir / "sets/train_mos_list.txt", header=None)
val_mos_list = pd.read_csv(cfg.input_dir / "sets/val_mos_list.txt", header=None)
test_mos_list = pd.read_csv(cfg.input_dir / "sets/test_mos_list.txt", header=None)
data = pd.concat([train_mos_list, val_mos_list, test_mos_list], axis=0)
data.columns = ["utt_id", "mos"]
data["file_path"] = data["utt_id"].apply(lambda x: cfg.input_dir / f"wav/{x}")
return data
def get_dataset(cfg, data: pd.DataFrame, phase: str) -> torch.utils.data.Dataset:
if cfg.print_config:
print(f"Using dataset: {cfg.dataset.name}")
if cfg.dataset.name == "multi_spec":
res = MultiSpecDataset(cfg, data, phase, cfg.transform)
elif cfg.dataset.name == "ssl":
res = SSLDataset(cfg, data, phase)
elif cfg.dataset.name == "sslext":
res = SSLExtDataset(cfg, data, phase)
elif cfg.dataset.name == "ssl_multispec_ext":
res = SSLLMultiSpecExtDataset(cfg, data, phase, cfg.transform)
elif cfg.dataset.name == "multi_spec_ext":
res = MultiSpecExtDataset(cfg, data, phase, cfg.transform)
else:
raise NotImplementedError
return res
def get_model(cfg, device: torch.device) -> nn.Module:
if cfg.print_config:
print(f"Using model: {cfg.model.name}")
if cfg.model.name == "multi_specv2":
model = MultiSpecModelV2(cfg)
elif cfg.model.name == "sslext":
model = SSLExtModel(cfg)
elif cfg.model.name == "multi_spec_ext":
model = MultiSpecExtModel(cfg)
elif cfg.model.name == "ssl_multispec_ext":
model = SSLMultiSpecExtModelV1(cfg)
elif cfg.model.name == "ssl_multispec_ext_v2":
model = SSLMultiSpecExtModelV2(cfg)
else:
raise NotImplementedError
model = model.to(device)
if cfg.weight is not None:
model.load_state_dict(torch.load(cfg.weight))
return model
def get_metrics() -> dict[str, Callable[[np.ndarray, np.ndarray], float]]:
return {
"mse": lambda x, y: np.mean((x - y) ** 2),
"lcc": lambda x, y: np.corrcoef(x, y)[0][1],
"srcc": lambda x, y: scipy.stats.spearmanr(x, y)[0],
"ktau": lambda x, y: scipy.stats.kendalltau(x, y)[0],
}
def calc_metrics(data: pd.DataFrame, preds: np.ndarray) -> dict[str, float]:
data = data.copy()
data["preds"] = preds
data_sys = data.groupby("sys_id", as_index=False)[["mos", "preds"]].mean()
res = {}
for name, d in {"utt": data, "sys": data_sys}.items():
res[f"{name}_mse"] = np.mean((d["mos"].values - d["preds"].values) ** 2)
res[f"{name}_lcc"] = np.corrcoef(d["mos"].values, d["preds"].values)[0][1]
res[f"{name}_srcc"] = scipy.stats.spearmanr(d["mos"].values, d["preds"].values)[
0
]
res[f"{name}_ktau"] = scipy.stats.kendalltau(
d["mos"].values, d["preds"].values
)[0]
return res
def configure_defaults(cfg):
if cfg.id_name is None:
cfg.id_name = "utt_id"
def _get_testdata(cfg, data: pd.DataFrame) -> pd.DataFrame:
with open(cfg.inference.val_list_path, "r") as f:
val_lists = [s.replace("\n", "") + ".wav" for s in f.readlines()]
test_data = data[data["utt_id"].isin(set(val_lists))]
return test_data
def get_inference_data(cfg) -> pd.DataFrame:
if cfg.reproduce:
data = get_data(cfg)
data = preprocess_test(cfg, data)
data = _get_testdata(cfg, data)
else:
if cfg.input_dir:
files = sorted(glob.glob(str(cfg.input_dir / "*.wav")))
data = pd.DataFrame({"file_path": files})
else:
data = pd.DataFrame({"file_path": [cfg.input_path.as_posix()]})
data["utt_id"] = data["file_path"].apply(
lambda x: x.split("/")[-1].replace(".wav", "")
)
data["sys_id"] = data["utt_id"].apply(lambda x: x.split("-")[0])
if cfg.inference.val_list_path:
with open(cfg.inference.val_list_path, "r") as f:
val_lists = [s.replace(".wav", "") for s in f.read().splitlines()]
print(val_lists)
data = data[data["utt_id"].isin(set(val_lists))]
data["dataset"] = cfg.predict_dataset
data["mos"] = 0
return data
def get_train_data(cfg) -> pd.DataFrame:
if cfg.reproduce:
data = get_data(cfg)
data = preprocess(cfg, data)
else:
with open(cfg.data_config, "r") as f:
datasets = json.load(f)
data = []
for dt in datasets["data"]:
files = sorted(glob.glob(str(Path(dt["dir"]) / "*.wav")))
d = pd.DataFrame({"file_path": files})
d["dataset"] = dt["name"]
d["utt_id"] = d["file_path"].apply(
lambda x: x.split("/")[-1].replace(".wav", "")
)
mos_list = pd.read_csv(dt["mos_list"], header=None)
mos_list.columns = ["utt_id", "mos"]
mos_list["utt_id"] = mos_list["utt_id"].apply(
lambda x: x.replace(".wav", "")
)
d = d.merge(mos_list, on="utt_id", how="inner")
d["sys_id"] = d["utt_id"].apply(lambda x: x.split("-")[0])
add_sys_mean(d)
data.append(d)
data = pd.concat(data, axis=0)
return data
def show_inference_data(data: pd.DataFrame):
print(
data[[c for c in data.columns if c != "mos"]]
.rename(columns={"dataset": "predict_dataset"})
.head()
)
def _get_test_save_name(cfg) -> str:
return f"{cfg.config_name}_[fold{cfg.inference.fold}_tta{cfg.inference.num_tta}_s{cfg.split.seed}]"
def save_test_preds(
cfg, data: pd.DataFrame, test_preds: np.ndarray, test_metrics: dict[str, float]
):
test_df = pd.DataFrame({cfg.id_name: data[cfg.id_name], "test_preds": test_preds})
save_path = (
cfg.inference.save_path
/ f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})_test_preds{'_final' if cfg.final else ''}.csv",
)
test_df.to_csv(save_path, index=False)
save_path = (
cfg.inference.save_path
/ f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})_val_score{'_final' if cfg.final else ''}.json",
)
with open(save_path, "w") as f:
json.dump(test_metrics, f)
print(f"Test predictions are saved to {save_path}")
def make_submission_file(cfg, data: pd.DataFrame, test_preds: np.ndarray):
submit = pd.DataFrame({cfg.id_name: data[cfg.id_name], "prediction": test_preds})
os.makedirs(
cfg.inference.submit_save_path
/ f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})",
exist_ok=True,
)
sub_file = (
cfg.inference.submit_save_path
/ f"{_get_test_save_name(cfg)}_({cfg.predict_dataset})"
/ "answer.txt"
)
submit.to_csv(
sub_file,
index=False,
header=False,
)
print(f"Submission file is saved to {sub_file}")
def save_preds(cfg, data: pd.DataFrame, test_preds: np.ndarray):
pred = pd.DataFrame({cfg.id_name: data[cfg.id_name], "mos": test_preds})
if cfg.out_path is None:
print("Predictions:")
print(pred)
else:
pred.to_csv(cfg.out_path, index=False)
print(f"Predictions are saved to {cfg.out_path}")
|